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1.

The purpose of this note is to illustrate how the spectral theorem for a compact
self-adjoint operator on a Hilbert space may be used to study some classical Sturm-
Liouville problems. For simplicity we will only discuss the so-called regular case.

When [a, b] ⊂ R and n ∈ N, we let Cn([a, b]) denote the space of n times continu-
ously differentiable complex functions on [a, b]. A regular Sturm-Liouville system on
some interval [a, b] is a second order linear differential equation of the form

(1) − (py′)′ + q y = λ ρ y ,

where

• p ∈ C1([a, b]) is real-valued and p(x) 6= 0 for all x ∈ [a, b],
• q, ρ ∈ C([a, b]) are real-valued and ρ(x) 6= 0 for all x ∈ [a, b],
• λ ∈ C,

and the unknown function y = y(x), which necessarily has to lie in C2([a, b]), is
required to satisfy boundary conditions of the type

(2) α1 y(a) + α2 y
′(a) = 0 , β1 y(b) + β2 y

′(b) = 0 ,

for some (α1, α2), (β1, β2) ∈ R2 \ {(0, 0).

Ideally, the Sturm-Liouville problem is to determine the values of λ for which
there exist non-trivial solutions of equation (1) satisfying the conditions (2), and to
describe these solutions. These values of λ are called the eigenvalues of the system,
and the corresponding solutions y are called eigenfunctions of the system. A concrete
answer to this problem is not possible in general, but as we will see, one may still
obtain some valuable theoretical information about it.

Since we only intend to give a small taste of Sturm-Liouville theory, we will assume
that p(x) = ρ(x) = 1 for all x ∈ [a, b], in which case equation (1) simplifies to

(3) − y′′ + qy = λy .

A suitably scaled version of this equation appears for example as the one dimensional
time-independent Schrödinger equation in quantum mechanics (where it is usually
considered on the whole real line).
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Set Y =
{
y ∈ C2([a, b]) : y satisfies the boundary conditions (2)

}
. We will con-

sider Y and C([a, b]) as inner product spaces w.r.t. to the inner product given by

〈f, g〉 =
∫ b

a
f(x)g(x) dx.

Letting D : Y → C[a, b] be the linear operator defined by

D(y) = −y′′ + qy ,

it is clear that our Sturm-Liouville system may be written as

(4) D(y) = λy where y ∈ Y.

Although the associated Sturm-Liouville problem looks like a familiar eigen-
value/eigenvector problem, it is not obvious how to proceed. The fact that Y
and C([a, b]) are not Hilbert spaces (they are not complete) can easily be fixed
because both can be considered as dense subspaces of L2([a, b]). (We leave it as
an exercise to show this for Y ). However, the trouble is that D is not a bounded
operator (check this!), so it does not extend to a bounded operator on L2([a, b]). We
will have to work quite a bit to recast the problem into one involving a compact
selfadjoint operator.

• We will first study the differential equation

(5) − y′′ + qy = λy with y ∈ C2([a, b])

and show that its solution space

Sλ := {y ∈ C2([a, b]) : −y′′ + qy = λy}

is 2-dimensional for every λ ∈ C.1 Note that trying to find out when there
exists some y ∈ Sλ \ {0} which also belongs to Y , which would solve our
problem, is not possible because a concrete description of Sλ is not available
in general.
• Next, we will establish some spectral properties of the operator D.
• Thirdly, we will assume that D is 1-1. We will then show that D is
onto C([a, b]), and that there exists a compact self-adjoint operator TG :
L2([a, b])→ L2([a, b]) such that its restriction to C([a, b]) is the inverse of D.
Applying the spectral theorem to TG will lead us to a theoretical answer to
our Sturm-Liouville problem in this case.
• Finally, we will explain how to handle the general case where D is not assumed
to be 1-1.

1This fact holds for the solution space of any homogeneous second order linear ordinary differential
equation, as some students may have seen in a previous course. We will give a self-contained proof
in our case.
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2. About the differential equation −y′′ + qy = λy, y ∈ C2([a, b])

We recall that λ ∈ C. In this section it is not important that the function
q ∈ C([a, b]) is assumed to be real-valued.

Theorem 2.1. Let c ∈ [a, b] and z1, z2 ∈ C. Then there exists a unique function
y ∈ C2([a, b]) satisfying that
(6) − y′′ + qy = λy and y(c) = z1, y

′(c) = z2.

Proof. Suppose first that y ∈ C2([a, b]) satisfies (6), that is,
(7) y′′ = (λ− q)y , y(c) = z1 and y ′(c) = z2 .

For every u ∈ [a, b], we get

y ′(u)− z2 = y ′(u)− y ′(c) =
∫ u

c
y′′(t) dt =

∫ u

c
(λ− q(t)) y(t) dt.

This gives that
y(x)− z1 − z2(x− c) = y(x)− y(c)− z2(x− c)

=
∫ x

c
(y ′(u)− z2) du

=
∫ x

c

∫ u

c
(λ− q(t)) y(t) dt du

=
∫ x

c

∫ x

t
(λ− q(t)) y(t) du dt

=
∫ x

c
(x− t)(λ− q(t)) y(t) dt

for all x ∈ [a, b], hence that y satisfies that the integral equation

(8) y(x) = z1 + z2(x− c) +
∫ x

c
(x− t)(λ− q(t)) y(t) dt for all x ∈ [a, b].

Conversely, if y ∈ C([a, b]) satisfies (8), then it is an easy exercise to check that y
belongs to C2([a, b]) and satisfies (7).

Now, let T : C([a, b]) → C([a, b]) be the integral operator defined for each f in
C([a, b]) by

[T (f)](x) = z1 + z2(x− c) +
∫ x

c
(x− t)(λ− q(t)) f(t) dt

for all x ∈ [a, b]. We consider here C([a, b]) as a complete metric space w.r.t. the
metric d(f, g) := ‖f − g‖∞ = sup{|f(x)− g(x)| : x ∈ [a, b]}.

Set K := sup
{
|(x − t)(λ − q(t))| : x, t ∈ [a, b]

}
< ∞. Let f, g ∈ C([a, b]) and

x ∈ [a, b]. By induction on n ∈ N, one easily shows that∣∣∣[Tn(f)− Tn(g)](x)
∣∣∣ ≤ 1

n! K
n |x− c|n ‖f − g‖∞ .

This implies that

‖Tn(f)− Tn(g)‖∞ ≤
Kn (b− a)n

n! ‖f − g‖∞ .



4 ERIK BÉDOS

It clearly follows that Tn is a contraction when n is so large that Kn (b−a)n

n! < 1.
Hence, Banach’s fixed point theorem 2 gives that T has a unique fixed point, say y,
in C([a, b]). This means that y is the unique function in C([a, b]) such that y = T (y),
i.e., such that y satisfies (8). Taking into account what we proved in the first part of
the proof, we are done. �

Corollary 2.2. Let λ ∈ C, and recall that Sλ = {y ∈ C2([a, b]) : −y′′ + qy = λy}.
Let c ∈ [a, b]. Then the map Tλ,c : Sλ → C2, defined by

Tλ,c(y) =
(
y(c), y′(c)

)
for every y ∈ Sλ ,

is an isomorphism. Hence, dimSλ = 2.
Proof. Theorem 2.1 shows that the map Tλ,c is 1-1 and onto. It is obvious that it is
linear. �

Remark 2.3. It should be noted that Theorem 2.1 is essentially an existence result
(although our method of proof gives a way to approximate the unique solution of (6)
by picking some y0 ∈ C([a, b]) and computing Tn(y0) for large enough n). Explicit
formulas for a basis of Sλ are only known when q is a constant function. To illustrate
Corollary 2.2, we recall these. Assume q(x) = ω for all x ∈ [a, b] for some ω ∈ C. Then
−y′′+qy = λy can be rewritten as the homogeneous equation y′′+(λ−ω)y = 0, which
we know can be solved by considering the characteristic equation z2 + (λ− ω) = 0:

If λ 6= ω, then, letting (ω − λ)1/2 denote a square root of ω − λ in C, we get that
Sλ consists of the functions of the form

y(x) = C1 e
(ω−λ)1/2x + C2 e

−(ω−λ)1/2x, x ∈ [a, b],

where C1, C2 ∈ C. Thus {e(ω−λ)1/2x, e−(ω−λ)1/2x} is a basis for Sλ in this case.
If λ = ω, then the equation is y′′ = 0, and {1, x} is obviously a basis for Sω.

Remark 2.4. Suppose that q is real-valued, λ ∈ R and y ∈ Sλ. Then it is not
difficult to verify that y ∈ Sλ, so that Re y and Im y also lie in Sλ. Moreover, if
it happens that y(c) and y′(c) both are real numbers for some c ∈ [a, b], then the
function y has to be real-valued: indeed, we then have (Im y)(c) = 0 = (Im y)′(c), so
Theorem 2.1 implies that Im y is the zero function on [a, b].
Remark 2.5. Consider y1, y2 ∈ C2([a, b]). Define Wy1,y2 ∈ C1([a, b]) by

Wy1,y2(x) =
∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ for each x ∈ [a, b].

Wy1,y2(x) is called the Wronsky determinant of (y1, y2) at x.
Assume that y1, y2 ∈ Sλ and let c ∈ [a, b]. Corollary 2.2 implies that the set

{y1, y2} is a basis for Sλ if and only if the vectors
(
y1(c), y′1(c)

)
,
(
y2(c), y′2(c)

)
are

linearly independent in C2, i.e., Wy1,y2(c) 6= 0. Note that this gives that if {y1, y2} is
a basis for Sλ, then Wy1,y2(x) 6= 0 for all x ∈ [a, b].

The Wronsky determinant appears in the following lemma (sometimes called
Lagrange’s lemma), which will be useful to us later:

2cf. Lindstrøm’s book Spaces, Exercise 3.4.7.
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Lemma 2.6. Define D̃ : C2([a, b])→ C([a, b]) by

D̃(y) = −y′′ + qy for y ∈ C2([a, b]),
and let f, g ∈ C2([a, b]). Then the following identity holds:

D̃(f)g − D̃(g)f = (fg′ − gf ′)′ = (Wf,g)′

Proof. We have
(Wf,g)′ = (fg′ − gf ′)′ = fg′′ + f ′g′ − gf ′′ − g′f ′ = fg′′ − gf ′′

= −f ′′g + qfg − qgf + fg′′ = D̃(f)g − D̃(g)f.
�

3. Some spectral properties of D

Let (α1, α2), (β1, β2) ∈ R2 \ {(0, 0)} and q ∈ C([a, b]) be real-valued. We recall
that

Y =
{
y ∈ C2([a, b]) | y satisfies the boundary conditions (9)

}
,

where
(9) α1 y(a) + α2 y

′(a) = 0 , β1 y(b) + β2 y
′(b) = 0 ,

and D : Y → C[a, b] is the linear operator defined by D(y) = −y′′ + qy for y ∈ Y .
Let λ ∈ C and set Eλ := {y ∈ Y : D(y) = λy}. We say that λ is an eigenvalue of

D if the subspace Eλ is non-trivial, in which case Eλ is called the eigenspace of D
associated to λ. We note that Eλ ⊂ Sλ, so Corollary 2.2 implies that dimEλ ≤ 2.

Proposition 3.1. Let f, g ∈ Y . Then we have
i) D(f)g −D(g)f = (fg′ − gf ′)′,
ii) 〈D(f), g〉 = 〈f,D(g)〉.

Proof. i) Since D = D̃|Y , this identity follows from Lagrange’s lemma (Lemma 2.6).
ii) It is easy to check that g ∈ Y and D(g) = D(g). Thus, using i), we get

〈D(f), g〉 − 〈f,D(g)〉 =
∫ b

a
[D(f)g − fD(g)](t) dt

=
∫ b

a
(fg′ − gf ′)′(t) dt =

[
(fg′ − gf ′)(t)

]b
a

= f(b)g′(b)− g(b)f ′(b)− f(a)g′(a) + g(a)f ′(a).

Now, since f and g both satisfy 9, we have[
f(b) f ′(b)
g(b) g ′(b)

] [
β1
β2

]
=
[

0
0

]
.

Since (β1, β2) 6= (0, 0), this implies that f(b)g′(b)− g(b)f ′(b) = 0.
Arguing in a similar way, one can also show that f(a)g′(a)−g(a)f ′(a) = 0. Inserting

these two equalities in our computation above, we get that
〈D(f), g〉 − 〈f,D(g)〉 = 0,

as desired. �
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Part ii) of Proposition 3.1 shows that the operator D enjoys a property similar to
self-adjointness. Proceeding exactly as we did for bounded self-adjoint operators on
Hilbert spaces, one deduces that the following result holds.

Corollary 3.2. All the possible eigenvalues of D are real, and the associated
eigenspaces are orthogonal to each other.

Note that we don’t know yet whether D has eigenvalues. Anyhow, we can say
more about its eigenspaces (if any).

Proposition 3.3. All possible eigenspaces of D are one-dimensional.

Proof. Let λ ∈ C. Recall that D̃ : C2([a, b])→ C([a, b]) is defined by D̃(y) = −y′′+qy
for y ∈ C2([a, b]), so D = D̃|Y . We first consider the space

Lλ := {y ∈ C2([a, b]) : D̃(y) = λy and y satisfies (10)},

where

(10) α1 y(a) + α2 y
′(a) = 0.

Condition (10) says that the vector (y(a), y ′(a)) belongs to M := Span{(−α2, α1)}.
Now, Corollary 2.2 (with c = a) gives that Lλ = T−1

λ,a(M). Since dimM = 1 and Tλ,a
is an isomorphism, we get that Lλ is a one-dimensional subspace of Sλ.

Similarly, one shows that Rλ := {y ∈ C2([a, b]) : D̃(y) = λy and y satisfies (11)},
where

(11) β1 y(b) + β2 y
′(b) = 0,

is also a one-dimensional subspace of Sλ.
Clearly, we have Eλ = Lλ∩Rλ. So there are only two possibilities: either Eλ = {0}

or dimEλ = 1. Hence, if λ is an eigenvalue of D, we must have dimEλ = 1.
�

Remark 3.4. We use the notation introduced in the proof above. Assume that
λ ∈ C is not an eigenvalue of D, and pick u ∈ Lλ, u 6= 0, v ∈ Rλ, v 6= 0. It is clear
from this proof that Lλ = Span{u} and Rλ = Span{v}. As Lλ ∩Rλ = Eλ = {0}, the
vectors u and v must be linearly independent. Since they both lie in Sλ, which is
2-dimensional by Corollary 2.2, we can then conclude that {u, v} is a basis for Sλ.

4. Exploiting D−1 when D is 1-1

We go back to the Sturm-Liouville problem for the equation D(y) = λy, y ∈ Y .
As long as we are not able to show that D has eigenvalues, it is not possible for us to
make efficient use of its spectral properties. Ideally, we would like to show that D is
diagonalizable, in the sense that there exists a sequence of eigenfunctions of D in Y
which forms an orthonormal basis for L2([a, b]). The trick to make progress on this
problem is to turn our attention to the inverse of D, whenever this makes sense.

We therefore assume throughout this section that D : Y → C([a, b]) is 1-1. We will
see how to get rid of this assumption in the next section.
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We will first show that D(Y ) = C([a, b]), i.e., D is onto, and that the inverse
operator

D−1 : C([a, b])→ Y

is an integral operator associated to a continuous kernel G : [a, b]× [a, b]→ C.

It should be noted here that given f ∈ C([a, b]), the standard way to show that the
differential equation −y′′ + qy = f has a solution is to pick a basis for the associated
homogeneous equation and use the method called variation of parameters. We will
not discuss this method here and follow a shorter path.

Since the operator D is linear, the fact that D is 1-1 means that its kernel is trivial,
that is, 0 is not an eigenvalue of D. As we saw in Remark 3.4, we can then pick a
basis {u, v} for S0 = {y ∈ C2([a, b]) : D̃(y) = 0} = {y ∈ C2([a, b]) : y′′ = qy} such
that

• u satisfies the condition α1 u(a) + α2 u
′(a) = 0,

• v satisfies the condition β1 v(b) + β2 v
′(b) = 0.

Since q is real-valued, we can also assume that u and v are real-valued, cf. Remark
2.4.

We note that Remark 2.5 tells us that Wu,v(x) 6= 0 for all x ∈ [a, b]. Moreover, as
D̃(u) = D̃(v) = 0, Lemma 2.6 gives that

(Wu,v)′ = D̃(u)v − D̃(v) = 0.

Hence, Wu,v is a constant function on [a, b]. This means that

Wu,v(x) = u(x)v′(x)− v(x)u′(x) = W for all x ∈ [a, b]

for some W ∈ R \ {0}.
We can now define the associated Green’s function G : [a, b]× [a, b]→ R by

G(x, t) = − 1
W
·


u(x)v(t) if a ≤ x ≤ t ≤ b,

u(t)v(x) if a ≤ t ≤ x ≤ b.

It is then straightforward to see that G is continuous. Hence we may form the
associated integral operator TG : L2([a, b])→ L2([a, b]), which is given by

[TG(f)](x) =
∫ b

a
G(x, t) f(t) dt

for all f ∈ L2([a, b]) and x ∈ [a, b]. It is clear that TG maps C([a, b]) into itself. In
fact, it maps C([a, b]) into Y :

Proposition 4.1. Let f ∈ C([a, b]) and set y := TG(f). Then y ∈ Y and D(y) = f .

Proof. Let x ∈ [a, b]. Using the definitions of G and TG we get

y(x) = −
∫ x

a
W−1 v(x)u(t)f(t) dt−

∫ b

x
W−1 u(x)v(t)f(t) dt.
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This implies that −Wy(x) = v(x)A(x) + u(x)B(x), where

A(x) :=
∫ x

a
u(t)f(t) dt and B(x) :=

∫ b

x
v(t)f(t) dt.

Thus we get
−Wy′(x) = v′(x)A(x) + v(x)A′(x) + u′(x)B(x) + u(x)B′(x)

= v′(x)A(x) + v(x)u(x)f(x) + u′(x)B(x)− u(x)v(x)f(x)
= v′(x)A(x) + u′(x)B(x).

Since v′, A, u′ and B all lie in C1([a, b]), we see that y ∈ C2([a, b]).
Further, using that A(a) = 0 and α1u(a) + α2u

′(a) = 0, we get

α1y(a) + α2y
′(a) = −1

W

(
α1v(a)A(a) + α1u(a)B(a) + α2v

′(a)A(a) + α2u
′(a)B(a)

)
= −1
W

(
α1u(a) + α2u

′(a)
)
B(a) = 0.

In a similar way we get β1 v(b) + β2 v
′(b) = 0. Thus we have shown that y ∈ Y .

To verify the second assertion, we first compute −Wy′′. Since u′′ = qu, v′′ = qv,
and v′u− u′v = W on [a, b], we get

−Wy′′ = (v′A+ u′B)′ = v′′A+ v′A′ + u′′B + u′B′

= q(vA+ uB) + (v′u− u′v)f
= −qWy + (v′u− u′v)f
= W (f − qy).

Thus, −y′′ = f − qy, which gives
D(y) = −y′′ + qy = f − qy + qy = f ,

as desired. �

The first part of Proposition 4.1 shows that D is onto C([a, b]). Since D is also
1-1 (by assumption), D has an inverse map D−1 : C([a, b])→ Y , which is defined as
follows:
Given some f ∈ C([a, b]), then

D−1(f) := y ,

where y ∈ Y is the unique function in Y such that D(y) = f .
We now see that the second part of Proposition 4.1 tells us that

D−1(f) = TG(f) for every f ∈ C([a, b]),
i.e., D−1 = (TG)|C([a,b]).

Since we have G(x, t) = G(t, x) for all (x, t) in [a, b]× [a, b] (check!), we get that
TG is self-adjoint. As TG is also compact (indeed, it is a Hilbert-Schmidt operator
on L2([a, b]), cf. ELA, Example 5.2.11), we are in the position to apply the spectral
theorem to TG. However, we will also need to know that TG maps L2([a, b]) into
C([a, b]). This is true for any integral operator with continuous kernel:
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Lemma 4.2. Assume K : [a, b] × [a, b] → C is continuous. Then the associated
integral operator TK : L2([a, b])→ L2([a, b]) maps L2([a, b]) into C([a, b]).

Proof. Let f ∈ L2([a, b]) and let ε > 0. Note that the Cauchy-Schwarz inequality
gives that

M :=
∫

[a,b]
|f | dm ≤

( ∫
[a,b]

1 dm
)1/2 ( ∫

[a,b]
|f |2 dm

)1/2
=
√
b− a ‖f‖2 <∞,

where m denotes the Lebesgue measure on [a, b]. As K is automatically uniformly
continuous on the compact set R := [a, b]× [a, b], we can find δ > 0 such that∣∣K(x1, t1)−K(x2, t2)

∣∣ < ε/M

whenever (x1, t1), (x2, t2) ∈ R and |x2 − x1| < δ, |t2 − t1| < δ.
Let now x0 ∈ [a, b]. Then for every t ∈ [a, b] and all x ∈ [a, b] such that |x−x0| < δ,

we have ∣∣K(x, t)−K(x0, t)
∣∣ < ε/M .

Thus we get∣∣∣[TK(f)](x)− [TK(f)](x0)
∣∣∣ =

∣∣∣ ∫
[a,b]

(
K(x, t)−K(x0, t)

)
f(t) dm(t)

∣∣∣
≤
∫

[a,b]

∣∣K(x, t)−K(x0, t)
∣∣ |f(t)| dm(t)

≤ ε/M
∫

[a,b]
|f | dm = ε

for all x ∈ [a, b] such that |x− x0| < δ. This shows that TK(f) is continuous at x0.
Since x0 was an arbitrary point of [a, b], TK(f) ∈ C([a, b]).

�

Theorem 4.3. Assume that D is 1-1, and consider the Sturm-Liouville problem
D(y) = λy with y ∈ Y.

Then the following assertions hold:
• The eigenvalues for this problem form a countable set {λk : k ∈ N} of non-zero
distinct real numbers satisfying that |λk| → ∞ as k →∞.
• For each k ∈ N the eigenspace Eλk

= {y ∈ Y : D(y) = λk y} is one-
dimensional.
• If yk is a unit vector in Eλk

for each k ∈ N, then {yk : k ∈ N} is an
orthonormal basis for L2([a, b]).

Proof. We first observe that 0 is not an eigenvalue of TG :
Indeed, since Y is dense in H := L2([a, b]), and Y = TG(C([a, b]), we have

H = Y ⊂ TG(H) ⊂ H,
hence TG(H) = H. Thus, we get ker(TG)⊥ = TG(H) = H, i.e., ker(TG) = {0}.

Applying the spectral theorem to TG, we obtain that the eigenvalues of TG form a
countable set {µk : k ∈ N} of non-zero distinct real numbers satisfying that µk → 0
as k →∞.
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Let k ∈ N, and set λk = µ−1
k 6= 0. Let fk ∈ H be an eigenfunction for TG

associated to µk. Since TG(fk) = µk fk , we get
(12) fk = λk TG(fk) .
As Lemma 4.2 gives that TG(fk) ∈ C([a, b]), this gives that fk ∈ C([a, b]). Hence,
TG(TG(fk)) ∈ Y . But (12) implies that

fk = λ 2
k TG

(
TG(fk)

)
,

so we get that fk ∈ Y . Now, applying D to (12), we get
D(fk) = λk fk .

This shows that λk is an eigenvalue of D, and fk is an eigenfunction for D associated
to λk. Now, Proposition 3.3 tells us that Eλk

:= {y ∈ Y : D(y) = λk y} is one-
dimensional. Hence, we have Eλk

= Span {fk}. Further, one readily checks that Eλk

is also the eigenspace of TG associated to µk.
We note that D can not have other eigenvalues than the λk’s (for if D had one

such eigenvalue, then TG would have an eigenvalue different from all µk’s, which is
not the case). Further, we note that

lim
k→∞

|λk| = lim
k→∞

|µk|−1 =∞

since limk→∞ µk = 0.
Finally, if we set yk := ±(‖fk‖2)−1 fk ∈ Eλk

for each k ∈ N, then we also get
from the spectral theorem for TG that {yk : k ∈ N} is an orthonormal basis for H
consisting of eigenfunctions for D.

�

Example 4.4. To illustrate this theorem, let us consider the Sturm-Liouville system
−y′′ = λy on [0, π], with Y = {y ∈ C2([0, π]) : y(0) = y(π) = 0}.

In other words, we consider D(y) = −y′′ with y ∈ Y .
Let λ ∈ C. We consider first the case λ = 0. It is straightforward to check that the

only function y in Y satisfying −y′′ = 0 is y = 0. Thus, 0 is not an eigenvalue of D,
i.e., D is 1-1, so Theorem 4.3 applies in this case. We can determine the eigenvalues
and the eigenfunctions of D explicitly as follows.

Assume λ 6= 0, and write λ1/2 = r + i s with (r, s) ∈ R2 \ {(0, 0)}.3

A basis for Sλ := {y ∈ C2([0, π]) : −y′′ = λy} is given by

{eiλ1/2x, e−iλ
1/2x} = {e−sx(cos(rx) + i sin(rx)), esx(cos(rx)− i sin(rx))}.

If y ∈ Sλ, say y(x) = C1 e
−sx(cos(rx) + i (sx)) + C2 e

sx(cos(rx)− i sin(rx)),
then y ∈ Y if and only if{

C1 + C2 = 0,
C1 e

−sπ(cos(rπ) + i sin(rπ)) + C2 e
sπ(cos(rπ)− i sin(rπ)) = 0.

3We could here have used that we know that all the possible eigenvalues of D are real, so that we
need only to consider λ ∈ R \ {0}. However this would not shorten our discussion significantly.
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This gives that Eλ = Sλ ∩ Y is non-trivial if and only if
e−sπ(cos(rπ) + i sin(rπ)) = esπ(cos(rπ)− i sin(rπ)),

and it is elementary to deduce that this happens if and only if s = 0 and r = k for
some k ∈ Z \ {0}, in which case λ = k2 ∈ N and Eλ = span{sin(kx)}.

This means that the distinct eigenvalues of this Sturm-Liouville system are λk =
k2, k ∈ N, with associated normalized eigenfunctions yk(x) =

√
2/π sin(kx). This

is in accordance with Theorem 4.3. Note that this theorem implies that the set
{
√

2/π sin(kx) : k ∈ N} is an orthonormal basis for L2([0, π]).
For completeness, we also compute the Green’s function G and TG(f) for f ∈

C([0, π]). One computes easily that L0 = {y ∈ C2([0, π]) : y′′ = 0, y(0) = 0} =
span{u}, where u(x) = x, while R0 = {y ∈ C2([0, π]) : y′′ = 0, y(π) = 0} = span{v},
where v(x) = x− π. Thus we get that

W = Wu,v(x) = u(x)v′(x)− v(x)u′(x) = x− (x− π) = π

for all x ∈ [0, π]. Moreover, the Green’s function G : [0, π]× [0, π]→ C is given by

G(x, t) = 1
π
·
{
x (π − t) if 0 ≤ x ≤ t ≤ π,
t (π − x) if 0 ≤ t ≤ x ≤ π,

and we obtain that

[TG(f)](x) =
∫ π

0
G(x, t) f(t) dt = 1

π

(
(π − x)

∫ x

0
tf(t) dt+ x

∫ π

x
(π − t)f(t) dt

)
for all f ∈ C([0, π]) and x ∈ [0, π]. Note that determining the eigenvalues of TG by
direct computation is not an easy task. Anyhow, you should verify that sin(kx) is an
eigenfunction for TG associated with the eigenvalue µk = k−2 for each k ∈ N.

5. The general case

In this final section, we consider the general case, i.e., we don’t assume that D is
1-1. The idea now is to show that there exists some µ ∈ R which is not an eigenvalue
of D, and consider the operator Dµ : Y → C([a, b]) defined by Dµ(y) = −y′′+qy−µy.
Then 0 will not be an eigenvalue of Dµ (otherwise there would be some y ∈ Y \ {0}
such that Dµ(y) = 0, i.e., D(y) = µy, and µ would be an eigenvalue of D, giving a
contradiction). Hence, we will be able to apply Theorem 4.3 to the Sturm-Liouville
system Dµ(y) = λ′y with y ∈ Y , and deduce some interesting consequences for our
original Sturm-Liouville problem.

Since we know that the possible eigenvalues of D are all real numbers, one may
think: why not just pick some µ ∈ C \ R? The problem with such a choice is that
the function qµ(x) := q(x)− µ for x ∈ [a, b] will not be real-valued, hence that the
Sturm-Liouville system associated with Dµ will not match our requirements.

Lemma 5.1. There exists some µ ∈ R which is not an eigenvalue of D.

Proof. We know that L2([a, b]) has a countable orthonormal basis, say {uk}k∈N. (One
may for example take uk(x) =

√
2/(b− a) sin

(
kπ(x− a)/(b− a)

)
for x ∈ [a, b] and

k ∈ N, cf. Example 4.4 when [a, b] = [0, π]). We will show that this implies that D
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has a countable number of distinct eigenvalues. Since R is uncountable, the assertion
to be proven will clearly follow.

Assume (for contradiction) that D has an uncountable number of distinct eigen-
values. Then we can pick a unit vector in each of the associated eigenspaces. As
all eigenspaces of D are orthogonal to each other, this means that there exists an
orthonormal subset Γ of Y which is uncountable.

Let k ∈ N. Then it follows from Bessel’s inequality that

Mk := sup
A⊂Γ, A finite

{∑
γ∈A
|〈uk, γ〉|2

}
≤ ‖uk‖22 = 1 < ∞.

This implies that the set

Uk,n :=
{
γ ∈ Γ : |〈uk, γ〉| ≥

1
n

}
is finite for every n ∈ N: indeed, if Uk,n was infinite for some n, then we could find
an infinite sequence {γm}m∈N of distinct elements in Uk,n, and this would give that

Mk ≥ sup
m∈N

{ m∑
`=1
|〈uk, γ`〉|2

}
≥ sup

m∈N

{
m · 1

n2

}
=∞ ,

contradicting that Mk <∞. Setting now Uk := {γ ∈ Γ : 〈uk, γ〉 6= 0}, we get that

Uk =
⋃
n∈N

Uk,n

is countable (being a countable union of finite sets). Hence, the countable union
U :=

⋃
k∈N Uk is a countable subset of Γ. As Γ is uncountable, there must exist some

γ ∈ Γ \ U . But then γ 6∈ Uk for every k ∈ N, so we have

〈uk, γ〉 = 0 for every k ∈ N.

This says that γ is orthogonal to every uk, so we must have γ = 0 (since {uk}k∈N
is an orthonormal basis for L2([a, b])). But this gives a contradiction, since every
element of Γ is a unit vector. We can therefore conclude that D has a countable
number of distinct eigenvalues. �

We can now state our main result about regular Sturm-Liouville systems:

Theorem 5.2. Consider the Sturm-Liouville problem

D(y) = λy with y ∈ Y.

Then the following assertions hold:

• The eigenvalues for this problem form a countable set {λk : k ∈ N} of distinct
real numbers satisfying that |λk| → ∞ as k →∞.
• For each k ∈ N the eigenspace Eλk

= {y ∈ Y : D(y) = λk y} is one-
dimensional.
• If yk is a unit vector in Eλk

for each k ∈ N, then {yk : k ∈ N} is an
orthonormal basis for L2([a, b]).
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Proof. By Lemma 5.1 we can find some µ ∈ R which is not an eigenvalue of D. We
define Dµ : Y → C([a, b]) by Dµ(y) = −y′′+qy−µy and consider the Sturm-Liouville
system Dµ(y) = λ′y on Y . Then, as 0 is not an eigenvalue of Dµ, we may apply
Theorem 4.3 to Dµ. This gives:

• The eigenvalues of Dµ form a countable set {λ′k : k ∈ N} of non-zero distinct
real numbers satisfying that |λ′k| → ∞ as k →∞.
• For each k ∈ N the eigenspace E′λ′

k
= {y ∈ Y : Dµ(y) = λ′k y} is one-

dimensional.
• If vk is a unit vector in E′λ′

k
for each k ∈ N, then {vk : k ∈ N} is an orthonormal

basis for L2([a, b]).
Now, for y ∈ Y , we obviously have D(y) = λy if and only if Dµ(y) = (λ − µ)y.
This implies that the set consisting of all eigenvalues of D is the countable set of
distinct real numbers given by {λk : k ∈ N}, where λk := λ′k + µ for each k ∈ N.
Moreover, the eigenspace Eλk

of D associated to each λk is then equal to E′λ′
k
, hence

is one-dimensional. Finally, if yk is a unit vector in Eλk
for each k ∈ N, then we have

yk = ± vk for every k ∈ N, so the last assertion clearly follows.
�

6. Exercises

Exercise 1
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system −y′′ = λy

on the given interval with the following boundary conditions:
i) [a, b] = [0, π], y ′(0) = 0, y ′(π) = 0.
ii) [a, b] = [0, π], y ′(0) = 0, y(π) = 0.
iii) [a, b] = [0, 2π], y(0) = 0, y(2π) = 0.
iv) [a, b] = [0, 1], y(0) = 0, y(1) + y ′(1) = 0.

Exercise 2
Consider a Sturm-Liouville system D(y) = λ y on Y as in (4), with boundary

conditions as in (2).
i) Assume that the following extra conditions holds:
a) q(x) ≥ 0 for all x ∈ [a, b],
b) α1α2 ≤ 0 and β1β2 ≥ 0.

Show that the eigenvalues of D are all non-negative.

Exercise 3
Consider a Sturm-Liouville system D(y) = λ y as in (4), but where

Y = {C2([a, b]) : y(a) or y′(a) = 0 ; y(b) or y′(b) = 0}.
Show that the distinct eigenvalues of D may ordered so that

λ1 < λ2 < λ3 < · · · and lim
k→∞

λk =∞ .
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Exercise 4
Assume D is 1-1, as in section 4. Show that the distinct eigenvalues of D satisfy

∞∑
k=1

1
|λk| 2

< ∞ .

Exercise 5
Show that the space Y = {y ∈ C2([a, b]) : y satisfies the conditions (2)} is dense

in L2([a, b]).
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