
Solutions to the exam in MAT3400/4400, Spring 2024

Problem 1
(a) Formulate what it means that a measure is absolutely continuous with respect to another

measure. Formulate the Radon–Nikodym derivative theorem.

(b) Consider the set N of natural numbers. Take two sequences (an)
∞
n=1 and (bn)

∞
n=1 of strictly

positive numbers and consider two measures µ and ν on (N,P(N)) (where P(N) denotes the σ-
algebra of all subsets of N) defined by

µ(A) =
∑
n∈A

an, ν(A) =
∑
n∈A

bn.

What is the Radon–Nikodym derivative
dµ

dν
? Justify the answer.

Solution:
(a) Given a measurable space (X,B) and two measures µ and ν on it, we say that µ is absolutely

continuous with respect to ν, if for every A ∈ B such that ν(A) = 0 we have µ(A) = 0.
The Radon–Nikodym theorem has several slightly different formulations, any of which is accepted

as a correct answer. The most common form states that if µ is absolutely continuous with respect
to ν and both measures are σ-finite, then there is a measurable function f : X → [0,+∞) such that
dµ = f dν, that is,

µ(A) =

∫
A
f dν for all A ∈ B.

Moreover, f is essentially unique in the sense that if f̃ is another function with the same properties,
then f = f̃ ν-a.e.

(b) Since an > 0 and bn > 0 for all n, the only set that has measure zero with respect to either
measure is the empty set. In particular, µ is absolutely continuous with respect to ν, hence a

Radon–Nikodym derivative f =
dµ

dν
exists. For every n ∈ N we have

an = µ({n}) =
∫
{n}

f dν = f(n)ν({n}) = f(n)bn, hence f(n) =
an
bn

.

Problem 2
Determine whether the following sequences (fn)

∞
n=1 converge in L1(0, 1) (we consider the Lebesgue

measure on (0, 1)), and whenever they do, find the limits. Justify your answer.

(a) fn(x) = n1(0,n−1](x), where 1A denotes the characteristic function of a set A.

(b) fn(x) =
sinxn

xn
.

Solution:
(a) The sequence (fn)n does not converge in L1(0, 1). One way to see this is to check that it is

not a Cauchy sequence: if n > m, then

∥fn − fm∥1 =
∫
(0,1)

|fn − fm| dλ =

∫
(0,1/n)

(n−m) dλ+

∫
(1/n,1/m)

mdλ = 2− 2m

n
,

and the last expression does not converge to zero when n and m (with n ≥ m) go to infinity.

Another possibility is to argue as follows. If the sequence (fn)n converges in L1(0, 1) to a
function g, then a subsequence converges to g a.e. But we have fn → 0 pointwise, so g = 0.
Therefore fn → 0 in L1(0, 1), which is nonsense as ∥fn∥1 = 1 for all n.
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(b) We use as known facts that 0 ≤ sinx ≤ x for x ∈ (0, 1) and
sinx

x
→ 1 as x ↓ 0.

As xn → 0 for every x ∈ (0, 1), we thus see that fn(x) → 1 for all x ∈ (0, 1). As |fn(x)| ≤ 1
for all n ∈ N and x ∈ (0, 1), by the dominated convergence theorem it follows that fn → 1 (the
constant function 1) in L1(0, 1).

We may also recall/observe that the function
sinx

x
is monotonically decreasing on (0, 1). There-

fore the sequence (fn)n is monotonically increasing, so instead of the dominated convergence theo-
rem we could have used the monotone convergence theorem.

Problem 3
(a) Formulate the Tonelli theorem.

(b) Assume (X,B, µ) is a σ-finite measure space and f : X → [0,+∞) is a measurable function.
For every t ≥ 0 consider the set At = {x ∈ X : f(x) ≥ t}. Show that∫

X
f dµ =

∫
[0,+∞)

µ(At) dλ(t),

where λ denotes the Lebesgue measure. Hint: integrate the characteristic function of the set
A = {(t, x) : f(x) ≥ t}.

(c) In the setting of (b), show that for every number p > 0 we have∫
X
fp dµ = p

∫
[0,+∞)

tp−1µ(At) dλ(t).

Solution:
(a) A short accepted formulation of the Tonelli theorem is that if (X1,B1, µ1) and (X2,B2, µ2)

are σ-finite measure spaces, f : X1 × X2 → [0,+∞] is a (B1 × B2)-measurable function, then the
integrals∫

X1×X2

f d(µ1 × µ2),

∫
X1

(∫
X2

f(x1, x2)dµ2(x2)

)
dµ1(x1),

∫
X2

(∫
X1

f(x1, x2)dµ1(x1)

)
dµ2(x2)

are well-defined (but possibly infinite) and equal.

(b) Following the hint we integrate 1A with respect to the measure λ × µ on [0,+∞) ×X. By
the Tonneli theorem we get

(λ×µ)(A) =

∫
X

(∫
[0,+∞)

1A(t, x) dλ(t)

)
dµ(x) =

∫
X

(∫
{t:0≤t≤f(x)}

1 dλ(t)

)
dµ(x) =

∫
X
f(x) dµ(x),

(λ× µ)(A) =

∫
[0,+∞)

(∫
X
1A(t, x) dµ(x)

)
dλ(t) =

∫
[0,+∞)

µ(At) dλ(t),

so the two integrals in the formulation of the problem are indeed equal.

(c) One possibility is to argue similarly to (b), but this time integrate the function (t, x) 7→
ptp−11A(t, x). Another possibility is to use (b) together with the change of variables formula for
the Lebesgue measure. Namely, by (b) applied to fp we have∫

X
fp dµ =

∫
[0,+∞)

µ({x : f(x)p ≥ t}) dλ(t) =
∫
[0,+∞)

µ({x : f(x) ≥ t1/p}) dλ(t).

Make the change of variables t = sp. Then the last integral becomes equal to∫
[0,+∞)

µ({x : f(x) ≥ s})psp−1 dλ(s) = p

∫
[0,+∞)

sp−1µ(As) dλ(s),
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which is what we need. (To be precise, we apply the change of variables formula to the integral
over (0,+∞). Point 0 does not play any role, as its Lebesgue measure is zero.)

Problem 4
Consider the space S(R) of Schwartz functions on R. Show using the Fourier transform that for

every g ∈ S(R) there exists a unique function f ∈ S(R) such that

f ′′ − f = g.

Solution:
Recall that the Fourier transform h 7→ ĥ is a bijection of S(R) onto itself. Hence the equation

f ′′ − f = g is equivalent to f̂ ′′ − f̂ = ĝ. If we use the same conventions for the Fourier transform
as in the lectures, that is,

ĥ(x) =
1

2π

∫
R
h(y)e−ixydy,

then ĥ′(x) = ix ĥ(x), hence ĥ′′(x) = −x2ĥ(x). Therefore the equation f ′′ − f = g is equivalent to

−(x2 + 1)f̂(x) = ĝ(x).

This equation has a unique solution f̂(x) = − ĝ(x)

1 + x2
. Note that the last fraction indeed defines a

function in S(R).

Problem 5
Assume f : R → [0,+∞) is a Lebesgue measurable integrable (with respect to the Lebesgue

measure) function. For x ∈ R, define
g(x) = lim inf

n→+∞
f(x+ n).

(a) Show that the function g is integrable.

(b) Show that g is periodic and conclude that g = 0 a.e.

Solution:
(a) For every n ∈ N, consider the function fn defined by fn(x) = f(x + n). Then g(x) =

lim infn→+∞ fn(x). Hence g is a positive measurable function and by Fatou’s lemma we have∫
R
g dλ ≤ lim inf

n→+∞

∫
R
fn dλ =

∫
R
f dλ < ∞,

since
∫
R fn dλ =

∫
R f dλ for all n.

(b) The sequences (f(x + n))∞n=1 and (f(x + n + 1))∞n=1 has the same limit inferior. Hence
g(x) = g(x+ 1), so g is 1-periodic. Then∫

R
g dλ =

∑
n∈Z

∫
[n,n+1)

g dλ =
∑
n∈Z

∫
[0,1)

g dλ,

where the first equality follows, for example, from the monotone convergence theorem. As
∫
R g dλ <

∞ by (a), the above equality is possible only if both
∫
[0,1) g dλ and

∫
R g dλ are zero. As g ≥ 0, it

follows then that g = 0 a.e.
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