Problem 1

(a) Formulate what it means that a measure is absolutely continuous with respect to another measure. Formulate the Radon-Nikodym derivative theorem.
(b) Consider the set \mathbb{N} of natural numbers. Take two sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ of strictly positive numbers and consider two measures μ and ν on $(\mathbb{N}, \mathcal{P}(\mathbb{N})$) (where $\mathcal{P}(\mathbb{N})$ denotes the σ algebra of all subsets of \mathbb{N}) defined by

$$
\mu(A)=\sum_{n \in A} a_{n}, \quad \nu(A)=\sum_{n \in A} b_{n}
$$

What is the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$? Justify the answer.

Solution:

(a) Given a measurable space (X, \mathcal{B}) and two measures μ and ν on it, we say that μ is absolutely continuous with respect to ν, if for every $A \in \mathcal{B}$ such that $\nu(A)=0$ we have $\mu(A)=0$.

The Radon-Nikodym theorem has several slightly different formulations, any of which is accepted as a correct answer. The most common form states that if μ is absolutely continuous with respect to ν and both measures are σ-finite, then there is a measurable function $f: X \rightarrow[0,+\infty)$ such that $d \mu=f d \nu$, that is,

$$
\mu(A)=\int_{A} f d \nu \quad \text { for all } \quad A \in \mathcal{B}
$$

Moreover, f is essentially unique in the sense that if \tilde{f} is another function with the same properties, then $f=\tilde{f} \nu$-a.e.
(b) Since $a_{n}>0$ and $b_{n}>0$ for all n, the only set that has measure zero with respect to either measure is the empty set. In particular, μ is absolutely continuous with respect to ν, hence a Radon-Nikodym derivative $f=\frac{d \mu}{d \nu}$ exists. For every $n \in \mathbb{N}$ we have

$$
a_{n}=\mu(\{n\})=\int_{\{n\}} f d \nu=f(n) \nu(\{n\})=f(n) b_{n}, \quad \text { hence } \quad f(n)=\frac{a_{n}}{b_{n}}
$$

Problem 2

Determine whether the following sequences $\left(f_{n}\right)_{n=1}^{\infty}$ converge in $L^{1}(0,1)$ (we consider the Lebesgue measure on $(0,1)$), and whenever they do, find the limits. Justify your answer.
(a) $f_{n}(x)=n \mathbb{1}_{\left(0, n^{-1}\right]}(x)$, where $\mathbb{1}_{A}$ denotes the characteristic function of a set A.
(b) $f_{n}(x)=\frac{\sin x^{n}}{x^{n}}$.

Solution:

(a) The sequence $\left(f_{n}\right)_{n}$ does not converge in $L^{1}(0,1)$. One way to see this is to check that it is not a Cauchy sequence: if $n>m$, then

$$
\left\|f_{n}-f_{m}\right\|_{1}=\int_{(0,1)}\left|f_{n}-f_{m}\right| d \lambda=\int_{(0,1 / n)}(n-m) d \lambda+\int_{(1 / n, 1 / m)} m d \lambda=2-\frac{2 m}{n}
$$

and the last expression does not converge to zero when n and m (with $n \geq m$) go to infinity.
Another possibility is to argue as follows. If the sequence $\left(f_{n}\right)_{n}$ converges in $L^{1}(0,1)$ to a function g, then a subsequence converges to g a.e. But we have $f_{n} \rightarrow 0$ pointwise, so $g=0$. Therefore $f_{n} \rightarrow 0$ in $L^{1}(0,1)$, which is nonsense as $\left\|f_{n}\right\|_{1}=1$ for all n.
(b) We use as known facts that $0 \leq \sin x \leq x$ for $x \in(0,1)$ and $\frac{\sin x}{x} \rightarrow 1$ as $x \downarrow 0$.

As $x^{n} \rightarrow 0$ for every $x \in(0,1)$, we thus see that $f_{n}(x) \rightarrow 1$ for all $x \in(0,1)$. As $\left|f_{n}(x)\right| \leq 1$ for all $n \in \mathbb{N}$ and $x \in(0,1)$, by the dominated convergence theorem it follows that $f_{n} \rightarrow 1$ (the constant function 1) in $L^{1}(0,1)$.

We may also recall/observe that the function $\frac{\sin x}{x}$ is monotonically decreasing on $(0,1)$. Therefore the sequence $\left(f_{n}\right)_{n}$ is monotonically increasing, so instead of the dominated convergence theorem we could have used the monotone convergence theorem.

Problem 3

(a) Formulate the Tonelli theorem.
(b) Assume (X, \mathcal{B}, μ) is a σ-finite measure space and $f: X \rightarrow[0,+\infty)$ is a measurable function. For every $t \geq 0$ consider the set $A_{t}=\{x \in X: f(x) \geq t\}$. Show that

$$
\int_{X} f d \mu=\int_{[0,+\infty)} \mu\left(A_{t}\right) d \lambda(t)
$$

where λ denotes the Lebesgue measure. Hint: integrate the characteristic function of the set $A=\{(t, x): f(x) \geq t\}$.
(c) In the setting of (b), show that for every number $p>0$ we have

$$
\int_{X} f^{p} d \mu=p \int_{[0,+\infty)} t^{p-1} \mu\left(A_{t}\right) d \lambda(t)
$$

Solution:

(a) A short accepted formulation of the Tonelli theorem is that if $\left(X_{1}, \mathcal{B}_{1}, \mu_{1}\right)$ and $\left(X_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ are σ-finite measure spaces, $f: X_{1} \times X_{2} \rightarrow[0,+\infty]$ is a $\left(\mathcal{B}_{1} \times \mathcal{B}_{2}\right)$-measurable function, then the integrals

$$
\int_{X_{1} \times X_{2}} f d\left(\mu_{1} \times \mu_{2}\right), \quad \int_{X_{1}}\left(\int_{X_{2}} f\left(x_{1}, x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right), \quad \int_{X_{2}}\left(\int_{X_{1}} f\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right)\right) d \mu_{2}\left(x_{2}\right)
$$

are well-defined (but possibly infinite) and equal.
(b) Following the hint we integrate $\mathbb{1}_{A}$ with respect to the measure $\lambda \times \mu$ on $[0,+\infty) \times X$. By the Tonneli theorem we get

$$
\begin{gathered}
(\lambda \times \mu)(A)=\int_{X}\left(\int_{[0,+\infty)} \mathbb{1}_{A}(t, x) d \lambda(t)\right) d \mu(x)=\int_{X}\left(\int_{\{t: 0 \leq t \leq f(x)\}} 1 d \lambda(t)\right) d \mu(x)=\int_{X} f(x) d \mu(x) \\
(\lambda \times \mu)(A)=\int_{[0,+\infty)}\left(\int_{X} \mathbb{1}_{A}(t, x) d \mu(x)\right) d \lambda(t)=\int_{[0,+\infty)} \mu\left(A_{t}\right) d \lambda(t)
\end{gathered}
$$

so the two integrals in the formulation of the problem are indeed equal.
(c) One possibility is to argue similarly to (b), but this time integrate the function $(t, x) \mapsto$ $p t^{p-1} \mathbb{1}_{A}(t, x)$. Another possibility is to use (b) together with the change of variables formula for the Lebesgue measure. Namely, by (b) applied to f^{p} we have

$$
\int_{X} f^{p} d \mu=\int_{[0,+\infty)} \mu\left(\left\{x: f(x)^{p} \geq t\right\}\right) d \lambda(t)=\int_{[0,+\infty)} \mu\left(\left\{x: f(x) \geq t^{1 / p}\right\}\right) d \lambda(t)
$$

Make the change of variables $t=s^{p}$. Then the last integral becomes equal to

$$
\int_{[0,+\infty)} \mu(\{x: f(x) \geq s\}) p s^{p-1} d \lambda(s)=p \int_{[0,+\infty)} s^{p-1} \mu\left(A_{s}\right) d \lambda(s)
$$

which is what we need. (To be precise, we apply the change of variables formula to the integral over $(0,+\infty)$. Point 0 does not play any role, as its Lebesgue measure is zero.)

Problem 4

Consider the space $\mathcal{S}(\mathbb{R})$ of Schwartz functions on \mathbb{R}. Show using the Fourier transform that for every $g \in \mathcal{S}(\mathbb{R})$ there exists a unique function $f \in \mathcal{S}(\mathbb{R})$ such that

$$
f^{\prime \prime}-f=g
$$

Solution:

Recall that the Fourier transform $h \mapsto \widehat{h}$ is a bijection of $\mathcal{S}(\mathbb{R})$ onto itself. Hence the equation $f^{\prime \prime}-f=g$ is equivalent to $\widehat{f^{\prime \prime}}-\widehat{f}=\widehat{g}$. If we use the same conventions for the Fourier transform as in the lectures, that is,

$$
\widehat{h}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} h(y) e^{-i x y} d y
$$

then $\widehat{h^{\prime}}(x)=i x \widehat{h}(x)$, hence $\widehat{h^{\prime \prime}}(x)=-x^{2} \widehat{h}(x)$. Therefore the equation $f^{\prime \prime}-f=g$ is equivalent to

$$
-\left(x^{2}+1\right) \widehat{f}(x)=\widehat{g}(x)
$$

This equation has a unique solution $\widehat{f}(x)=-\frac{\widehat{g}(x)}{1+x^{2}}$. Note that the last fraction indeed defines a function in $\mathcal{S}(\mathbb{R})$.

Problem 5

Assume $f: \mathbb{R} \rightarrow[0,+\infty$) is a Lebesgue measurable integrable (with respect to the Lebesgue measure) function. For $x \in \mathbb{R}$, define

$$
g(x)=\liminf _{n \rightarrow+\infty} f(x+n)
$$

(a) Show that the function g is integrable.
(b) Show that g is periodic and conclude that $g=0$ a.e.

Solution:

(a) For every $n \in \mathbb{N}$, consider the function f_{n} defined by $f_{n}(x)=f(x+n)$. Then $g(x)=$ $\liminf _{n \rightarrow+\infty} f_{n}(x)$. Hence g is a positive measurable function and by Fatou's lemma we have

$$
\int_{\mathbb{R}} g d \lambda \leq \liminf _{n \rightarrow+\infty} \int_{\mathbb{R}} f_{n} d \lambda=\int_{\mathbb{R}} f d \lambda<\infty
$$

since $\int_{\mathbb{R}} f_{n} d \lambda=\int_{\mathbb{R}} f d \lambda$ for all n.
(b) The sequences $(f(x+n))_{n=1}^{\infty}$ and $(f(x+n+1))_{n=1}^{\infty}$ has the same limit inferior. Hence $g(x)=g(x+1)$, so g is 1-periodic. Then

$$
\int_{\mathbb{R}} g d \lambda=\sum_{n \in \mathbb{Z}} \int_{[n, n+1)} g d \lambda=\sum_{n \in \mathbb{Z}} \int_{[0,1)} g d \lambda
$$

where the first equality follows, for example, from the monotone convergence theorem. As $\int_{\mathbb{R}} g d \lambda<$ ∞ by (a), the above equality is possible only if both $\int_{[0,1)} g d \lambda$ and $\int_{\mathbb{R}} g d \lambda$ are zero. As $g \geq 0$, it follows then that $g=0$ a.e.

