UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT4410 — Advanced Linear Analysis
Eksamensdag:	16. desember 2015
Tid for eksamen:	09.00-13.00
Oppgavesettet er på 2	? sider.
Vedlegg:	None
Tillatte hjelpemidler:	None

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

(a) (5p) Let λ be Lebesgue measure on the σ -algebra \mathcal{B} of all Borel measurable sets on the half open interval (0, 1]. We define a signed measure α on \mathcal{B} by

$$\alpha(E) = \int_E \cos(2\pi x) \,\mathrm{d}\lambda(x), \quad E \in \mathcal{B}.$$

Find a Hahn-decomposition for α in (0, 1] and determine the positive and negative variations α^+ and α^- of α .

A measure β is given by

$$\beta(E) = \int_E \frac{1}{x} d\lambda(x), \quad E \in \mathcal{B}.$$

(b) (15 p) Explain that $\lambda \ll \beta$, $|\alpha| \ll \beta$, and find the Radon-Nikodym derivatives

$$rac{\mathrm{d}\lambda}{\mathrm{d}eta} \quad ext{and} \quad rac{\mathrm{d}|lpha|}{\mathrm{d}eta}.$$

(c) (10p) Let μ be counting measure on \mathcal{B} (that is, $\mu(E) =$ the number of elements of E if E is finite, $\mu(E) = +\infty$ if E is infinite). Show that $\lambda \ll \mu$. Prove that there is no \mathcal{B} -measurable function f on (0, 1] such that

$$\lambda(E) = \int_E f \,\mathrm{d}\mu, \quad E \in \mathcal{B}.$$

Explain why this does not contradict the Radon-Nikodym Theorem.

Oppgave 2

Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space (that is, $\mu(\Omega) < \infty$). Suppose that

(Fortsettes på side 2.)

(i) V is a closed subspace of $\mathcal{L}^p(\mu)$ for some $p, \ 1 \le p < \infty$, and

(*ii*) V is contained in $\mathcal{L}^{\infty}(\mu)$.

In other words, V is a subspace of $\mathcal{L}^p(\mu) \cap \mathcal{L}^{\infty}(\mu)$, for some $p, 1 \leq p < \infty$, that is closed in the *p*-norm.

(a) (5p) Show that $V \subset \mathcal{L}^2(\mu)$ and that there is a constant C such that

(1)
$$||f||_2 \le C||f||_{\infty}$$
 whenever $f \in V$.

Below we shall see that the inequality in (1) can be reversed.

(b) (15p) What do we mean by a closed linear map between two normed linear spaces? Show that the identity map

$$I : f \mapsto f, \ (V, || \cdot ||_p) \to (V, || \cdot ||_{\infty})$$

is a closed map. Explain that there is an M > 0 such that

(2)
$$||f||_{\infty} \leq M ||f||_p$$
, for all $f \in V$.

(c) (15p) Assume next that 2 in (i) and (ii). Show that there is an <math>A > 0 so that

$$||f||_{\infty} \le A||f||_2$$
 whenever $f \in V$.

Hint: $|f(x)|^p \le ||f||_{\infty}^{p-2} |f(x)|^2$, $f \in V$.

(d) (10p) Suppose that $1 \le p \le 2$ in (i) and (ii). Show that there exists B > 0 such that

$$||f||_{\infty} \le B||f||_2$$

Hint: Consider $r = \frac{2}{p}$ and $s = \frac{2}{2-p}$. Then apply Hölder's inequality.

Oppgave 3

Let \mathcal{M} be the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} , λ be Lebesgue measure on \mathcal{M} . Assume that f is a continuous map from [0,1]into \mathbb{R} and consider the condition

(N) $\lambda(f(E)) = 0$ whenever $\lambda(E) = 0$ and $E \subset [0, 1]$.

(a) (15p) Suppose f satisfies (N). Show that $f(E) \in \mathcal{M}$ whenever $E \in \mathcal{M}$ and $E \subset [0, 1]$.

(b) (10p) Show that if $f(E) \in \mathcal{M}$ whenever $E \in \mathcal{M}$ and $E \subset [0, 1]$, then f satisfies (N). You can use (without proof) the fact that every $A \in \mathcal{M}$ for which $\lambda(A) > 0$ contains a nonmeasurable subset D with positive outer Lebesgue measure $(\lambda^*(D) > 0)$.

THE END