UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in	MAT4410 — Videregående Linear Analyse
Day of examination:	13. desember 2016
Examination hours:	09.00-13.00
This problem set consists of 3 pages.	
Appendices:	Ingen
Permitted aids:	Ingen

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (25p)

Let $F\,:\,\mathbb{R}\to\mathbb{R}$ be the right continuous function defined by

(1)
$$F(t) = \begin{cases} 2 - \frac{1}{(1+t)^2}, & \text{if } t \ge 0\\ 0, & \text{if } t < 0 \end{cases}$$

and let μ_F be the Borel measure on \mathbb{R} associated to the (distribution) function F.

(a) What is $\mu_F(a, b]$, a < b, $(a, b \in \mathbb{R})$? Give detailed formulas. Find the Lebesgue decomposition of μ_F with respect to Lebesgue measure λ .

 (\mathbf{b}) Explain why

$$\int_{\mathbb{R}} g \,\mathrm{d}\mu_F = g(0) + \int_0^\infty g(t) \frac{2}{(1+t)^3} \,\mathrm{d}\lambda(t)$$

for all Borel measurable $g : \mathbb{R} \to \mathbb{R}$ for which the function $t \mapsto \frac{g(t)}{(1+t)^3}$ is λ -integrable on $[0, \infty)$.

Problem 2 (35p)

Let λ be Lebesgue measure on the Borel σ -algebra n $\mathcal{B}(\mathbb{R})$ on \mathbb{R} and let $f \in \mathcal{L}^1(\lambda)$. We define

$$f^*(x) = \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} |f(t)| \,\mathrm{d}\lambda(t), \quad x \in \mathbb{R}$$

and

$$U_t = \{x \in \mathbb{R} : f^*(x) > t\}, \quad t > 0.$$

Let, for all r > 0 and all $x \in \mathbb{R}$, $I_r(x)$ denote the open interval $I_r(x) = (x - r, x + r)$.

(Continued on page 2.)

(a) Suppose that $r_2 > r_1 > 0$. Show that

$$\int_{x-r_1}^{x+r_1} |f| \,\mathrm{d}\lambda \le \int_{z-r_2}^{z+r_2} |f| \,\mathrm{d}\lambda$$

for all $z \in I_{r_2-r_1}(x)$.

(b) Prove that U_t is open (and hence Borel measurable) for every $z \in I_{r_2 - r_1}(x).$

Hint: For all $x \in U_t$ there are r_1 and r_2 such that $r_2 > r_1 > 0$ and

$$\frac{1}{2r_1} \int_{x-r_1}^{x+r_1} |f| \,\mathrm{d}\lambda > t \,, \quad \frac{1}{2r_2} \int_{x-r_1}^{x+r_1} |f| \,\mathrm{d}\lambda > t$$

Consider $I_{r_2-r_1}(x)$.

(c) Next we will prove that

(2)
$$\lambda(U_t) \le \frac{3}{t} ||f||_1$$

Explain that it suffices to prove (2) for all compact subsets K of U_t (hence that $\lambda(K) \leq (3/t)||f||_1$ for all such K).

(d) In what follows you can take for granted that for every finite set $\{I_1, I_2, ..., I_N\}$ of open intervals, there is a subset $\{I'_1, I'_2, ..., I'_M\}$ of pairwise disjoint intervals $(I'_j \cap I'_k = \emptyset, \ 1 \le j < k \le M)$ such that

$$\lambda(\bigcup_{k=1}^{N} I_k) \le 3\sum_{j=1}^{M} \lambda(I'_j).$$

Show that

$$\lambda(K) \le \frac{3}{t} ||f||_1$$

for all compact $K \subset U_t$.

Hint: For all $x \in K$, choose $I_r(x) = (x - r, x + r)$ such that

$$\frac{1}{\lambda(I_r(x))} \int_{I_r(x)} |f| \,\mathrm{d}\lambda > t.$$

Problem 3 (25p)

(a) Let X be a linear normed space, X^* the dual space of X. Justify that at every $x \in X$ induces a bounded linear functional l_x defined on X^* .

Show that we also have $||l_x|| = ||x||$. Hint: Hahn-Banach.

(b) Assume that $(\Omega, \mathcal{A}, \mu)$ is a σ -finite measure space $(\mu \ge 0)$,

 $1 \leq p < +\infty, \frac{1}{p} + \frac{1}{q} = 1.$ Let $\mathcal{F} \subset \mathcal{L}^p(\mu)$. Show that there is a finite positive M such that $||f||_p \leq M$ for all $f \in \mathcal{F}$ if and only if

(3)
$$\sup_{f \in \mathcal{F}} \left| \int_{\Omega} gf \, \mathrm{d}\mu \right| < \infty, \text{ for all } g \in \mathcal{L}^{q}(\mu).$$

(Continued on page 3.)

Problem 4 (15p)

Consider Lebesgue measure λ on the Borel σ -algebra \mathcal{B} on [0,1]. Assume that (f_n) is a sequence of absolutely continuous functions on [0, 1] enjoying the following properties:

(1) There is a continuous function f such that $f = \lim_{n \to \infty} f_n$ pointwise as on [0, 1].

(2) There is a function g such that $g = \lim_{n \to \infty} f'_n$ pointwise as on [0, 1]. (3) There is an integrable function F such that

 $|f'_n(x)| \le F(x)$ for all $x \in [0,1]$ and for all $n \in \mathbb{N}$.

Show that f is equal to an absolutely continuous function as and that f' = g as on [0, 1].

THE END