This note outlines a proof of Exercise 6.53 (a) and Exercise 6.54 (a) in [1] (se below for statements). We will use the following lemma, see Lemma 9.13 in [2].
Lemma 0.1. Let (Γ, \mathcal{S}) and (Λ, \mathcal{T}) be measurable sets. If \mathcal{S}_{0} is a nonempty collection of subsets of Γ that generates \mathcal{S} and \mathcal{T}_{0} is a nonempty collection of subsets of Λ that generates \mathcal{T}, show that the collection $\mathcal{S}_{0} \times \mathcal{T}_{0}$ consisting of cartesian products $B \times C$ with $B \in \mathcal{S}_{0}$ and $C \in \mathcal{T}_{0}$ generates the product σ-algebra $\mathcal{S} \times \mathcal{T}$.
Proof. Denote \mathcal{A} the σ-algebra generated by the collection $\mathcal{S}_{0} \times \mathcal{T}_{0}$. Let $\pi_{1}: \Gamma \times \Lambda \rightarrow \Gamma$ be the projection onto the first coordinate $\pi_{1}(x, y)=y$. Verify directly that the set $\left\{A \subseteq \Gamma \mid \pi^{-1}(A) \in \mathcal{A}\right\}$ is a σ-algebra on Γ which contains \mathcal{S}_{0} (use that the inverse image of a map preserves taking complements of sets and unions of sets). Then this set contains \mathcal{S}. It follows that the collection $\mathcal{S} \times \Lambda$ consisting of cartesian products $B \times \Lambda$ with $B \in \mathcal{S}$ is contained in \mathcal{A}. Similarly, $\Gamma \times \mathcal{T} \subset \mathcal{A}$. Then

$$
(\mathcal{S} \times \Lambda) \cap(\Gamma \times \mathcal{T})=(\mathcal{S} \cap \Gamma) \times(\mathcal{T} \cap \Lambda)=\mathcal{S} \subset \mathcal{A}
$$

This shows that the collection of rectangles $\mathcal{U}=\{B \times C \mid B \in \mathcal{S} C \in \mathcal{T}$ is contained in \mathcal{A}, hence the product σ-algebra, being generated by these rectangles, is contained in \mathcal{A}.

The other inclusion follows because $\mathcal{S}_{0} \times \mathcal{T}_{0}$ is contained in the collection \mathcal{U}.
Exercise 6.53(a) in [1] For $n \geq 1$ let \mathcal{B}_{n} be the Borel algebra on \mathbb{R}^{n}, i.e. the σ-algebra generated by the open subsets of \mathbb{R}^{n}. Then $\mathcal{B}_{2}=\mathcal{B} \times \mathcal{B}$.

To prove this, use that \mathcal{B} is generated by the collection \mathcal{E} of open sets in \mathbb{R}, so Lemma 0.1 implies $\mathcal{B} \times \mathcal{B}=\mathcal{B}(\mathcal{E} \times \mathcal{E})$. Since every set in $\mathcal{E} \times \mathcal{E}$ is open in \mathbb{R}^{2}, we get $\mathcal{B}(\mathcal{E} \times \mathcal{E}) \subset \mathcal{B}_{2}$. For the converse inclusion, use that every open ball in \mathbb{R}^{2} can be written as a countable union of elements in $\mathcal{E} \times \mathcal{E}$, in fact as a countable union of sets of the form $(a, b) \times(c, d)$ with a, b, c, d rational numbers. Then we get $\mathcal{B}_{2} \subset \mathcal{B}(\mathcal{E} \times \mathcal{E})$ and the exercise follows.
Lemma 0.2. Let $\left(\Omega_{j}, \mathcal{A}_{j}, \mu_{j}\right), j=1,2,3$ be σ-finite measure spaces. Then $\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right) \times$ $\mathcal{A}_{3}=\mathcal{A}_{1} \times\left(\mathcal{A}_{2} \times \mathcal{A}_{3}\right)$ and $\left(\mu_{1} \times \mu_{2}\right) \times \mu_{3}=\mu_{1} \times\left(\mu_{2} \times \mu_{3}\right)$.
Proof. For the first claim, use rectangles $\left(A_{1} \times A_{2}\right) \times A_{3}=A_{1} \times\left(A_{2} \times A_{3}\right)$ for $i=1,2,3$ as generating sets and apply the previous lemma. For the second, use that $\left(\mu_{1} \times \mu_{2}\right) \times \mu_{3}$ and $\mu_{1} \times\left(\mu_{2} \times \mu_{3}\right)$ coincide on rectangles $A_{1} \times A_{2} \times A_{3}$ generating $\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3}$, and apply the result about existence and uniqueness of product measure.

Note that Lemma 0.2 allows us to define $\mathcal{B} \times \cdots \times \mathcal{B}$ on $\mathbb{R} \times \cdots \times \mathbb{R}$, where we have n factors. One can similarly to the above prove that $\mathcal{B}_{n}=\mathcal{B} \times \cdots \times \mathcal{B}$.

Exercise 6.54(a) [1] Show that \mathcal{B}_{2} is also generated by the 2-dimensional intervals $I \times J$ of \mathbb{R}^{2}, where I, J are intervals of form $(a, b]$ or (c, ∞) in \mathbb{R}.

To prove this note that intervals of the form $(a, b]$ for $-\infty \leq a \leq b<\infty$ can be expressed as countable intersections of intervals $(a, b+1 / n)$ for $n \in \mathbb{N}$. Thus we can reduce to open sets of the form $(a, b) \times(c, d)$ and use the previous exercise.

References

[1] J.N. McDonald and N.A. Weiss, A course in Real Analysis, 2nd edition, Academic Press, Amsterdam, 2013.
[2] G. Teschl, Topics in real and functional analysis, http://www.mat.univie.ac.at/ gerald/ftp/bookfa/index.html.

