
This note outlines a proof of Exercise 6.53 (a) and Exercise 6.54 (a) in [1] (se below
for statements). We will use the following lemma, see Lemma 9.13 in [2].

Lemma 0.1. Let (Γ,S) and (Λ, T ) be measurable sets. If S0 is a nonempty collection
of subsets of Γ that generates S and T0 is a nonempty collection of subsets of Λ that
generates T , show that the collection S0×T0 consisting of cartesian products B×C with
B ∈ S0 and C ∈ T0 generates the product σ-algebra S × T .
Proof. Denote A the σ-algebra generated by the collection S0 ×T0. Let π1 : Γ×Λ→ Γ
be the projection onto the first coordinate π1(x, y) = y. Verify directly that the set
{A ⊆ Γ | π−1(A) ∈ A} is a σ-algebra on Γ which contains S0 (use that the inverse
image of a map preserves taking complements of sets and unions of sets). Then this set
contains S. It follows that the collection S × Λ consisting of cartesian products B × Λ
with B ∈ S is contained in A. Similarly, Γ× T ⊂ A. Then

(S × Λ) ∩ (Γ× T ) = (S ∩ Γ)× (T ∩ Λ) = S ⊂ A.
This shows that the collection of rectangles U = {B × C | B ∈ S C ∈ T is contained in
A, hence the product σ-algebra, being generated by these rectangles, is contained in A.

The other inclusion follows because S0 × T0 is contained in the collection U . �

Exercise 6.53(a) in [1] For n ≥ 1 let Bn be the Borel algebra on Rn, i.e. the
σ-algebra generated by the open subsets of Rn. Then B2 = B × B.

To prove this, use that B is generated by the collection E of open sets in R, so
Lemma 0.1 implies B × B = B(E × E). Since every set in E × E is open in R2, we get
B(E ×E) ⊂ B2. For the converse inclusion, use that every open ball in R2 can be written
as a countable union of elements in E × E , in fact as a countable union of sets of the
form (a, b)× (c, d) with a, b, c, d rational numbers. Then we get B2 ⊂ B(E × E) and the
exercise follows.

Lemma 0.2. Let (Ωj,Aj, µj), j = 1, 2, 3 be σ-finite measure spaces. Then (A1×A2)×
A3 = A1 × (A2 ×A3) and (µ1 × µ2)× µ3 = µ1 × (µ2 × µ3).

Proof. For the first claim, use rectangles (A1×A2)×A3 = A1× (A2×A3) for i = 1, 2, 3
as generating sets and apply the previous lemma. For the second, use that (µ1×µ2)×µ3

and µ1 × (µ2 × µ3) coincide on rectangles A1 × A2 × A3 generating A1 ×A2 ×A3, and
apply the result about existence and uniqueness of product measure. �

Note that Lemma 0.2 allows us to define B × · · · × B on R× · · · × R, where we have
n factors. One can similarly to the above prove that Bn = B × · · · × B.

Exercise 6.54(a) [1] Show that B2 is also generated by the 2-dimensional intervals
I × J of R2, where I, J are intervals of form (a, b] or (c,∞) in R.

To prove this note that intervals of the form (a, b] for −∞ ≤ a ≤ b < ∞ can be
expressed as countable intersections of intervals (a, b + 1/n) for n ∈ N. Thus we can
reduce to open sets of the form (a, b)× (c, d) and use the previous exercise.
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