This note outlines two (very similar) proofs of Exercise 14.5 in J.N. McDonald and
N.A. Weiss, A course in Real Analysis, 2nd edition, Academic Press, Amsterdam, 2013,
stating that every Hilbert space is reflexive as a Banach space.

Let H be a Hilbert space and consider the map J : H — H** defined by

(0, J(y)) = (Y, ») = ¢(v)

for y € H and ¢ € H. We claim that J is onto (surjective).

Recall that by the Riesz lemma, a functional ¢ on H is of the form ¢ = ¢, with
oy (x) = (z | y) for all x € H for a unique vector y € H such that ||¢]| = |ly||. There is
therefore a bijective map ® : H — H* defined by ®(y) = ¢, for y € H.

Proof 1, almost as done in class: Let ¢ € H* = (H*)*, thus { : H* — C is a
bounded linear functional. The composition £ o ® : H — C satisfies (£ o ®)(y + 2) =
(Lo®)(y)+ (LoP)(z) and (£ o P)(ay) = a(lo P)(y) for all y,z € H and a € C. Then
(: H — C given by {(z) = ((®(x)) for € H is a bounded linear functional on H. By
the Riesz lemma, there is a unique y € H such that f(z) = (z | y) for all z € H. We
claim that J(y) = ¢, which will imply the surjectivity claim. It suffices to show that
J(y)(®(z)) = £(P(x)) for all (x) € H*, where x € H. For x € H we have

(@(z), J(y)) = ¢a(y) = (v | 2),

and

(P(2),0) = U(P(x)) = (z | y) = (y | 2),
as needed.

Proof 2: 1t is immediate from the construction that ®(y; + y2) = @(v1) + ¢(y2) for
Y1,Y2 € H. For a € C, we have ®(ay) = ¢, = iy, so @ is a conjugate linear bijective
map. With this map we can identify H* with H as a Hilbert space, where we take the
inner product

(@(y1) | (y2)) = (y2 | 1) for y1,y2 € H.
The inner product on H* is linear in the first variable and conjugate linear in the second
variable, as can be seen from the following computations:

(a®(y1) | D(12)) = (P(aw) | B(y2)) = (v2 | aw1)
=a(yz | y1) = a(@(y) | D(y2))
and
(®(y1) | a®(y2)) = (P(w1) | P(@y2)) = (Ao | v1)
=a(y: [ y) =a(P(y1) | P(y2))-
Now let ¢ € H* = (H*)*, so by the Riesz lemma applied to H* there is ®(y) € H*
such that
((®(z)) = (®(x) | B(y)) for all D(z) € H*.
Then (®(x), J(y)) = ®(x)(y) = <§ (y) = (y | 2) and ((2),0) = (P(z)) = (P(z) |

)
®(y)) = (y | ), which implies J( l.



