This note outlines two (very similar) proofs of Exercise 14.5 in J.N. McDonald and N.A. Weiss, A course in Real Analysis, 2nd edition, Academic Press, Amsterdam, 2013, stating that every Hilbert space is reflexive as a Banach space.

Let $H$ be a Hilbert space and consider the map $J: H \rightarrow H^{* *}$ defined by

$$
\langle\varphi, J(y)\rangle=\langle y, \varphi\rangle=\varphi(y)
$$

for $y \in H$ and $\varphi \in H$. We claim that $J$ is onto (surjective).
Recall that by the Riesz lemma, a functional $\ell$ on $H$ is of the form $\ell=\varphi_{y}$ with $\varphi_{y}(x)=(x \mid y)$ for all $x \in H$ for a unique vector $y \in H$ such that $\|\ell\|=\|y\|$. There is therefore a bijective map $\Phi: H \rightarrow H^{*}$ defined by $\Phi(y)=\varphi_{y}$ for $y \in H$.

Proof 1, almost as done in class: Let $\ell \in H^{* *}=\left(H^{*}\right)^{*}$, thus $\ell: H^{*} \rightarrow \mathbb{C}$ is a bounded linear functional. The composition $\ell \circ \Phi: H \rightarrow \mathbb{C}$ satisfies $(\ell \circ \Phi)(y+z)=$ $(\ell \circ \Phi)(y)+(\ell \circ \Phi)(z)$ and $(\ell \circ \Phi)(\alpha y)=\bar{\alpha}(\ell \circ \Phi)(y)$ for all $y, z \in H$ and $\alpha \in \mathbb{C}$. Then $\tilde{\ell}: H \rightarrow \mathbb{C}$ given by $\tilde{\ell}(x)=\overline{\ell(\Phi(x))}$ for $x \in H$ is a bounded linear functional on $H$. By the Riesz lemma, there is a unique $y \in H$ such that $\tilde{\ell}(x)=(x \mid y)$ for all $x \in H$. We claim that $J(y)=\ell$, which will imply the surjectivity claim. It suffices to show that $J(y)(\Phi(x))=\ell(\Phi(x))$ for all $\Phi(x) \in H^{*}$, where $x \in H$. For $x \in H$ we have

$$
\langle\Phi(x), J(y)\rangle=\varphi_{x}(y)=(y \mid x)
$$

and

$$
\langle\Phi(x), \ell\rangle=\ell(\Phi(x))=\overline{(x \mid y)}=(y \mid x),
$$

as needed.
Proof 2: It is immediate from the construction that $\Phi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$ for $y_{1}, y_{2} \in H$. For $\alpha \in \mathbb{C}$, we have $\Phi(\alpha y)=\varphi_{\alpha y}=\bar{\alpha} \varphi_{y}$, so $\Phi$ is a conjugate linear bijective map. With this map we can identify $H^{*}$ with $H$ as a Hilbert space, where we take the inner product

$$
\left(\Phi\left(y_{1}\right) \mid \Phi\left(y_{2}\right)\right)=\left(y_{2} \mid y_{1}\right) \text { for } y_{1}, y_{2} \in H
$$

The inner product on $H^{*}$ is linear in the first variable and conjugate linear in the second variable, as can be seen from the following computations:

$$
\begin{aligned}
\left(\alpha \Phi\left(y_{1}\right) \mid \Phi\left(y_{2}\right)\right) & =\left(\Phi\left(\bar{\alpha} y_{1}\right) \mid \Phi\left(y_{2}\right)\right)=\left(y_{2} \mid \bar{\alpha} y_{1}\right) \\
& =\alpha\left(y_{2} \mid y_{1}\right)=\alpha\left(\Phi\left(y_{1}\right) \mid \Phi\left(y_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\Phi\left(y_{1}\right) \mid \alpha \Phi\left(y_{2}\right)\right) & =\left(\Phi\left(y_{1}\right) \mid \Phi\left(\bar{\alpha} y_{2}\right)\right)=\left(\bar{\alpha} y_{2} \mid y_{1}\right) \\
& =\bar{\alpha}\left(y_{2} \mid y_{1}\right)=\bar{\alpha}\left(\Phi\left(y_{1}\right) \mid \Phi\left(y_{2}\right)\right) .
\end{aligned}
$$

Now let $\ell \in H^{* *}=\left(H^{*}\right)^{*}$, so by the Riesz lemma applied to $H^{*}$ there is $\Phi(y) \in H^{*}$ such that

$$
\ell(\Phi(x))=(\Phi(x) \mid \Phi(y)) \text { for all } \Phi(x) \in H^{*} .
$$

Then $\langle\Phi(x), J(y)\rangle=\Phi(x)(y)=\varphi_{x}(y)=(y \mid x)$ and $\langle\Phi(x), \ell\rangle=\ell(\Phi(x))=(\Phi(x) \mid$ $\Phi(y))=(y \mid x)$, which implies $J(y)=\ell$.

