
MAT4410 2018: Suggested solution

Problem 1a. Solution: Show first that σ(C) = {
⋃

E∈J E | J ⊂ C}, by
proving that the set on the right-hand side of the equality is a σ-algebra
containing every element of C. Let f be σ(C)-measurable and E ∈ C. Show
that f |E is constant. If this were not the case, let x, y ∈ E such that f(x) =
s 6= t = f(y). Pick disjoint open subsets U and V of R with s ∈ U and
t ∈ V . Now f−1(U) is in σ(C) and has non-empty intersection with E, hence
it contains E by the form of elements in σ(C). Similarly, f−1(U) contains E.
Then f(E) is contained in U ∩V , a contradiction. Thus for each E ∈ C there
is aE ∈ R such that f(x) = aE for all x ∈ E and the claim about f follows.

Problem 1b. Apply 1a to get E(f | G) of the claimed form. For each
j ≥ 1,∫
Fj

fdP =

∫
Fj

E(f | G)dP =

∫
Fj

n∑
k=1

akχFk
dP =

n∑
k=1

ak

∫
Fj

χFk
dP = ajP (Fj),

where we used that
∫
Fj
χFk

dP = 0 whenever k 6= j, thus showing that only

one term in the sum is non-zero. Thus aj = P (Fj)
−1

∫
Fj
fdP for each j.

Problem 2a Given (Ω,A, µ) a σ-finite measure space, (R,M, λ) and
f : Ω→ [0,∞) an A measurable function, define g : Ω×R→ R by g(x, t) =
f(x) − t. To first claim is that g is measurable with respect to the product
σ-algebra A×M on Ω×R. One solution is: use that g(x, t) = f(x)− h(t),
h(t) = for t ∈ R, so g is the difference of two A×M-measurable functions,
and is therefore measurable. Another solution is to let s ∈ R and verify
directly that

g−1((s,∞)) =
⋃
r∈Q

f−1((s+ r,∞))× (−∞, r),

which is a countable union of measurable rectangles, and therefore in A×M.
The equality of sets is verified by proving the two inclusions. For example,
if (x, t) ∈ g−1((s,∞)), then f(x) > t + s, so there is rx ∈ Q such that
f(x)− s > rx > t, which shows (x, t) ∈ f−1((s+ rx,∞))× (−∞, rx), a set in
the countable union. The other inclusion is easy.

A third possibility is to use the bootstrapping technique: Suppose first
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that f = χE for E ∈ A. Then

g(x, t) =

{
1− t, if x ∈ E
−t, if x ∈ Ec.

Let r ∈ R. Then g−1((r,∞)) = {(x, t) | g(x, t) > r}, so g−1((r,∞)) is the
union of the sets E × (−∞, 1 − r) and Ec × (−∞,−r), each of which is a
measurable rectangle in A×M, showing that g−1((r,∞)) ∈ A×M.

Suppose next that f is a simple function in standard form, so f =∑n
i=1 aiχEi

with E1, . . . , En pairwise disjoint in A. Then once can check
that g−1((s,∞)) is a union of sets Ei × (−∞,−ai − r), each of which is in
A×M.

Finally, let f be arbitrary nonnegative A-measurable. There exists a
nonincreasing sequence {sn} of nonnegative, measurable functions such that
sn converges to f pointwise, µ-a.e. We have

g−1((r,∞)) = {(x, t) | lim
n
sn(x) > r + t},

so, by approximating each t with a rational number tm, we get

g−1((r,∞))) =
⋃
n,m

{(x, t) | sn(x) ≥ r + tm},

which by the previous steps of the problem is in A×M.
For the second part of 2a, let A ∈ A and define

B = {(x, t) ∈ Ω× R | 0 ≤ t ≤ f(x), x ∈ A},
C = {(x, t)Ω× R | t = f(x), x ∈ A}.

To show that B,C ∈ A×M, note that B = (A× [0,∞))∩g−1([0,∞)), which
is in A×M by the measurability of g. Similarly, C = (A×[0,∞))∩g−1({0}),
again in A×M.

Problem 2b. To show that (µ × λ)(B) =
∫
A
f dµ and (µ × λ)(C) = 0,

note that the x section of B is Bx = {t ∈ R | 0 ≤ t ≤ f(x), x ∈ A}. By
Tonelli’s theorem, which applies because both (Ω,A, µ) and (R,M, λ) are
σ-finite, we obtain

(µ× λ)(B) =

∫
Ω×R

χB d(µ× λ) =

∫
Ω

λ(Bx)dµ(x).

This gives

(µ× λ)(B) =

∫
Ω

λ([0, f(x)])χA(x)dµ(x) =

∫
A

f(x)dµ(x).
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Since Cx = {t | g(x, t) = 0, x ∈ A}, Tonelli’s theorem gives

(µ× λ)(C) =

∫
Ω

λ(Cx)dµ(x) =

∫
A

0 dµ = 0.

Problem 3 One solution is to apply the Hahn-Banach theorem to the
linear functional ϕ to obtain a linear functional Φ : Lp(µ) → C such that
Φ restricted to S is ϕ and ‖Φ‖ = ‖ϕ‖ < ∞. Thus, Φ is a bounded linear
functional on Lp(µ) and since (Lp(µ))∗ ∼= Lq(µ) there is a function g ∈ Lq(µ)
such that

Φ(f) =

∫
Ω

fg dµ for all f ∈ Lp(µ),

thus in particular for all f in S. Another solution is to use that the space S
is dense in Lp(µ), a fact proved in class, and to use the existence of a unique
extension of φ from S to Lp(µ) with same norm. Then use the duality
(Lp(µ))∗ ∼= Lq(µ) to find the required g.

Problem 4a. State PUB for a sequence {An} of bounded linear operators
between normed spaces.

Problem 4b. We are given a sequence An of operators in B(Ω,Λ) for
Banach spaces Ω,Λ such that for each y ∈ Ω the sequence {Any}n converges
in Λ. To prove that A : Ω → Λ given by Ay = limn(Any) for each y ∈
Ω is linear and bounded, note first that if y1 and y2 are given in Ω, then
we have convergent sequences {An(y1)}n, {An(y2)}n and {An(y1 + y2)}n in
Λ. Since An(y1 + y2) = An(y1) + An(y2) for every n ≥ 1 and since the
limit of a convergent sequence in a normed space is unique, we must have
A(y1 + y2) = A(y1) + A(y2). A similar argument (write it down) shows that
A(αy) = αAy for y ∈ Ω and α ∈ C, showing that A is linear. To see that it
is bounded, note that for each y ∈ Ω, the sequence {Any}n is bounded, being
convergent, so the family {An}n is pointwise bounded. By PUB, {An}n is
uniformly bounded, meaning that supn≥1 ‖An‖ < ∞. By definition of A we
have ‖A‖ ≤ supn≥1 ‖An‖, which implies that A is bounded.

Let c0(N) denote the Banach space of sequences converging to zero con-
sidered with the supremum norm ‖ · ‖∞. Suppose that x = {xj}j≥1 is a
sequence of complex numbers such that

∑∞
j=1 xjyj is a convergent series

for every {yj}j≥1 ∈ c0(N). For every n ≥ 1, define φn : c0(N) → C by
φn(y) =

∑n
j=1 xjyj for y = {yj}j≥1 in c0(N).

Problem 4c. Let n ≥ 1. Since yn → 0, the sequence y = {yn}n≥1 is
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bounded. Then

|φn(y)| ≤
n∑

j=1

|xjyj| ≤ ‖y‖∞
n∑

j=1

|xj|.

Hence ‖φn‖ ≤
∑n

j=1 |xj|, which is a constant (since the sum is finite) so φn

is bounded. Routine verifications show that φn is linear (fill them in).

Problem 4d. To show that x ∈ l1(N), let y = {yn}n≥1 in c0(N). Then

lim
n→∞

φn(y) = lim
n→∞

n∑
j=1

xjyj,

which is dominated by the convergent sum
∑∞

j=1 xjyj. Thus by (4b), the
map φ(y) = limn→∞ φn(y) defines a bounded functional φ : c0(N) → C with
norm dominated by sup{‖φn‖ | n ∈ N} < ∞. For every j ≥ 1 let αj ∈ C
such that xjαj = |xj|. Since

φn(α1, . . . , αn, 0 . . . ) =
n∑

j=1

xjαj =
n∑

j=1

|xj|,

it follows that ‖φn‖ =
∑n

j=1 |xj| for n ≥ 1. Hence ‖x‖1 =
∑∞

n=1 |xn| =

sup{‖φn‖ | n ≥ 1} <∞, so that x ∈ l1(N).
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