MAT4410 2018: Suggested solution

Problem 1a. Solution: Show first that $\sigma(\mathcal{C})=\left\{\bigcup_{E \in J} E \mid J \subset \mathcal{C}\right\}$, by proving that the set on the right-hand side of the equality is a σ-algebra containing every element of \mathcal{C}. Let f be $\sigma(\mathcal{C})$-measurable and $E \in \mathcal{C}$. Show that $\left.f\right|_{E}$ is constant. If this were not the case, let $x, y \in E$ such that $f(x)=$ $s \neq t=f(y)$. Pick disjoint open subsets U and V of \mathbb{R} with $s \in U$ and $t \in V$. Now $f^{-1}(U)$ is in $\sigma(\mathcal{C})$ and has non-empty intersection with E, hence it contains E by the form of elements in $\sigma(\mathcal{C})$. Similarly, $f^{-1}(U)$ contains E. Then $f(E)$ is contained in $U \cap V$, a contradiction. Thus for each $E \in \mathcal{C}$ there is $a_{E} \in \mathbb{R}$ such that $f(x)=a_{E}$ for all $x \in E$ and the claim about f follows.

Problem 1b. Apply 1a to get $\mathcal{E}(f \mid \mathcal{G})$ of the claimed form. For each $j \geq 1$,
$\int_{F_{j}} f d P=\int_{F_{j}} \mathcal{E}(f \mid \mathcal{G}) d P=\int_{F_{j}} \sum_{k=1}^{n} a_{k} \chi_{F_{k}} d P=\sum_{k=1}^{n} a_{k} \int_{F_{j}} \chi_{F_{k}} d P=a_{j} P\left(F_{j}\right)$,
where we used that $\int_{F_{j}} \chi_{F_{k}} d P=0$ whenever $k \neq j$, thus showing that only one term in the sum is non-zero. Thus $a_{j}=P\left(F_{j}\right)^{-1} \int_{F_{j}} f d P$ for each j.

Problem 2a Given $(\Omega, \mathcal{A}, \mu)$ a σ-finite measure space, $(\mathbb{R}, \mathcal{M}, \lambda)$ and $f: \Omega \rightarrow[0, \infty)$ an \mathcal{A} measurable function, define $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ by $g(x, t)=$ $f(x)-t$. To first claim is that g is measurable with respect to the product σ-algebra $\mathcal{A} \times \mathcal{M}$ on $\Omega \times \mathbb{R}$. One solution is: use that $g(x, t)=f(x)-h(t)$, $h(t)=$ for $t \in \mathbb{R}$, so g is the difference of two $\mathcal{A} \times \mathcal{M}$-measurable functions, and is therefore measurable. Another solution is to let $s \in \mathbb{R}$ and verify directly that

$$
g^{-1}((s, \infty))=\bigcup_{r \in \mathbb{Q}} f^{-1}((s+r, \infty)) \times(-\infty, r),
$$

which is a countable union of measurable rectangles, and therefore in $\mathcal{A} \times \mathcal{M}$. The equality of sets is verified by proving the two inclusions. For example, if $(x, t) \in g^{-1}((s, \infty))$, then $f(x)>t+s$, so there is $r_{x} \in \mathbb{Q}$ such that $f(x)-s>r_{x}>t$, which shows $(x, t) \in f^{-1}\left(\left(s+r_{x}, \infty\right)\right) \times\left(-\infty, r_{x}\right)$, a set in the countable union. The other inclusion is easy.

A third possibility is to use the bootstrapping technique: Suppose first
that $f=\chi_{E}$ for $E \in \mathcal{A}$. Then

$$
g(x, t)= \begin{cases}1-t, & \text { if } x \in E \\ -t, & \text { if } x \in E^{c} .\end{cases}
$$

Let $r \in \mathbb{R}$. Then $g^{-1}((r, \infty))=\{(x, t) \mid g(x, t)>r\}$, so $g^{-1}((r, \infty))$ is the union of the sets $E \times(-\infty, 1-r)$ and $E^{c} \times(-\infty,-r)$, each of which is a measurable rectangle in $\mathcal{A} \times \mathcal{M}$, showing that $g^{-1}((r, \infty)) \in \mathcal{A} \times \mathcal{M}$.

Suppose next that f is a simple function in standard form, so $f=$ $\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ with E_{1}, \ldots, E_{n} pairwise disjoint in \mathcal{A}. Then once can check that $g^{-1}((s, \infty))$ is a union of sets $E_{i} \times\left(-\infty,-a_{i}-r\right)$, each of which is in $\mathcal{A} \times \mathcal{M}$.

Finally, let f be arbitrary nonnegative \mathcal{A}-measurable. There exists a nonincreasing sequence $\left\{s_{n}\right\}$ of nonnegative, measurable functions such that s_{n} converges to f pointwise, μ-a.e. We have

$$
g^{-1}((r, \infty))=\left\{(x, t) \mid \lim _{n} s_{n}(x)>r+t\right\},
$$

so, by approximating each t with a rational number t_{m}, we get

$$
\left.g^{-1}((r, \infty))\right)=\bigcup_{n, m}\left\{(x, t) \mid s_{n}(x) \geq r+t_{m}\right\}
$$

which by the previous steps of the problem is in $\mathcal{A} \times \mathcal{M}$.
For the second part of 2 a , let $A \in \mathcal{A}$ and define

$$
\begin{aligned}
& B=\{(x, t) \in \Omega \times \mathbb{R} \mid 0 \leq t \leq f(x), x \in A\}, \\
& C=\{(x, t) \Omega \times \mathbb{R} \mid t=f(x), x \in A\} .
\end{aligned}
$$

To show that $B, C \in \mathcal{A} \times \mathcal{M}$, note that $B=(A \times[0, \infty)) \cap g^{-1}([0, \infty))$, which is in $\mathcal{A} \times \mathcal{M}$ by the measurability of g. Similarly, $C=(A \times[0, \infty)) \cap g^{-1}(\{0\})$, again in $\mathcal{A} \times \mathcal{M}$.

Problem 2b. To show that $(\mu \times \lambda)(B)=\int_{A} f d \mu$ and $(\mu \times \lambda)(C)=0$, note that the x section of B is $B_{x}=\{t \in \mathbb{R} \mid 0 \leq t \leq f(x), x \in A\}$. By Tonelli's theorem, which applies because both $(\Omega, \mathcal{A}, \mu)$ and $(\mathbb{R}, \mathcal{M}, \lambda)$ are σ-finite, we obtain

$$
(\mu \times \lambda)(B)=\int_{\Omega \times \mathbb{R}} \chi_{B} d(\mu \times \lambda)=\int_{\Omega} \lambda\left(B_{x}\right) d \mu(x) .
$$

This gives

$$
(\mu \times \lambda)(B)=\int_{\Omega} \lambda([0, f(x)]) \chi_{A}(x) d \mu(x)=\int_{A} f(x) d \mu(x) .
$$

Since $C_{x}=\{t \mid g(x, t)=0, x \in A\}$, Tonelli's theorem gives

$$
(\mu \times \lambda)(C)=\int_{\Omega} \lambda\left(C_{x}\right) d \mu(x)=\int_{A} 0 d \mu=0 .
$$

Problem 3 One solution is to apply the Hahn-Banach theorem to the linear functional φ to obtain a linear functional $\Phi: L^{p}(\mu) \rightarrow \mathbb{C}$ such that Φ restricted to \mathcal{S} is φ and $\|\Phi\|=\|\varphi\|<\infty$. Thus, Φ is a bounded linear functional on $L^{p}(\mu)$ and since $\left(L^{p}(\mu)\right)^{*} \cong L^{q}(\mu)$ there is a function $g \in L^{q}(\mu)$ such that

$$
\Phi(f)=\int_{\Omega} f g d \mu \text { for all } f \in L^{p}(\mu)
$$

thus in particular for all f in \mathcal{S}. Another solution is to use that the space \mathcal{S} is dense in $L^{p}(\mu)$, a fact proved in class, and to use the existence of a unique extension of ϕ from \mathcal{S} to $L^{p}(\mu)$ with same norm. Then use the duality $\left(L^{p}(\mu)\right)^{*} \cong L^{q}(\mu)$ to find the required g.

Problem 4a. State PUB for a sequence $\left\{A_{n}\right\}$ of bounded linear operators between normed spaces.

Problem $\mathbf{4 b}$. We are given a sequence A_{n} of operators in $B(\Omega, \Lambda)$ for Banach spaces Ω, Λ such that for each $y \in \Omega$ the sequence $\left\{A_{n} y\right\}_{n}$ converges in Λ. To prove that $A: \Omega \rightarrow \Lambda$ given by $A y=\lim _{n}\left(A_{n} y\right)$ for each $y \in$ Ω is linear and bounded, note first that if y_{1} and y_{2} are given in Ω, then we have convergent sequences $\left\{A_{n}\left(y_{1}\right)\right\}_{n},\left\{A_{n}\left(y_{2}\right)\right\}_{n}$ and $\left\{A_{n}\left(y_{1}+y_{2}\right)\right\}_{n}$ in Λ. Since $A_{n}\left(y_{1}+y_{2}\right)=A_{n}\left(y_{1}\right)+A_{n}\left(y_{2}\right)$ for every $n \geq 1$ and since the limit of a convergent sequence in a normed space is unique, we must have $A\left(y_{1}+y_{2}\right)=A\left(y_{1}\right)+A\left(y_{2}\right)$. A similar argument (write it down) shows that $A(\alpha y)=\alpha A y$ for $y \in \Omega$ and $\alpha \in \mathbb{C}$, showing that A is linear. To see that it is bounded, note that for each $y \in \Omega$, the sequence $\left\{A_{n} y\right\}_{n}$ is bounded, being convergent, so the family $\left\{A_{n}\right\}_{n}$ is pointwise bounded. By PUB, $\left\{A_{n}\right\}_{n}$ is uniformly bounded, meaning that $\sup _{n \geq 1}\left\|A_{n}\right\|<\infty$. By definition of A we have $\|A\| \leq \sup _{n \geq 1}\left\|A_{n}\right\|$, which implies that A is bounded.

Let $c_{0}(\mathbb{N})$ denote the Banach space of sequences converging to zero considered with the supremum norm $\|\cdot\|_{\infty}$. Suppose that $x=\left\{x_{j}\right\}_{j \geq 1}$ is a sequence of complex numbers such that $\sum_{j=1}^{\infty} x_{j} y_{j}$ is a convergent series for every $\left\{y_{j}\right\}_{j \geq 1} \in c_{0}(\mathbb{N})$. For every $n \geq 1$, define $\phi_{n}: c_{0}(\mathbb{N}) \rightarrow \mathbb{C}$ by $\phi_{n}(y)=\sum_{j=1}^{n} x_{j} y_{j}$ for $y=\left\{y_{j}\right\}_{j \geq 1}$ in $c_{0}(\mathbb{N})$.

Problem 4c. Let $n \geq 1$. Since $y_{n} \rightarrow 0$, the sequence $y=\left\{y_{n}\right\}_{n \geq 1}$ is
bounded. Then

$$
\left|\phi_{n}(y)\right| \leq \sum_{j=1}^{n}\left|x_{j} y_{j}\right| \leq\|y\|_{\infty} \sum_{j=1}^{n}\left|x_{j}\right| .
$$

Hence $\left\|\phi_{n}\right\| \leq \sum_{j=1}^{n}\left|x_{j}\right|$, which is a constant (since the sum is finite) so ϕ_{n} is bounded. Routine verifications show that ϕ_{n} is linear (fill them in).

Problem 4d. To show that $x \in l^{1}(\mathbb{N})$, let $y=\left\{y_{n}\right\}_{n \geq 1}$ in $c_{0}(\mathbb{N})$. Then

$$
\lim _{n \rightarrow \infty} \phi_{n}(y)=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} x_{j} y_{j},
$$

which is dominated by the convergent sum $\sum_{j=1}^{\infty} x_{j} y_{j}$. Thus by (4b), the $\operatorname{map} \phi(y)=\lim _{n \rightarrow \infty} \phi_{n}(y)$ defines a bounded functional $\phi: c_{0}(\mathbb{N}) \rightarrow \mathbb{C}$ with norm dominated by $\sup \left\{\left\|\phi_{n}\right\| \mid n \in \mathbb{N}\right\}<\infty$. For every $j \geq 1$ let $\alpha_{j} \in \mathbb{C}$ such that $x_{j} \alpha_{j}=\left|x_{j}\right|$. Since

$$
\phi_{n}\left(\alpha_{1}, \ldots, \alpha_{n}, 0 \ldots\right)=\sum_{j=1}^{n} x_{j} \alpha_{j}=\sum_{j=1}^{n}\left|x_{j}\right|,
$$

it follows that $\left\|\phi_{n}\right\|=\sum_{j=1}^{n}\left|x_{j}\right|$ for $n \geq 1$. Hence $\|x\|_{1}=\sum_{n=1}^{\infty}\left|x_{n}\right|=$ $\sup \left\{\left\|\phi_{n}\right\| \mid n \geq 1\right\}<\infty$, so that $x \in l^{1}(\mathbb{N})$.

