Solutions to the exam in M AT4410, Fall 2019

Problem 1
(a) Formulate the Uniform Boundedness Principle.

(b) Let X be a locally compact space. Assume we are given functions f,, (n € N) and f in Cy(X)

such that
| dudus [ s (1)
X noJx

for all regular complex Borel measures p on X. Show that sup,, || fn|| < oo (where || f,|| denotes the
supremum-norm of f,) and f, — f pointwise.

(c) Show that conversely, if f,, f € Co(X) are such that sup,, || fn|| < co and f, — f pointwise,
then we have (1) for all complex Borel measures y on X.

Solution:
(a) Assume {T;: X — Y},cr is a collection of bounded linear operators between a Banach
space X and a normed space Y such that sup, || T;z|| < oo for every z € X. Then sup; ||T;|| < oc.

(b) By a corollary of the Riesz-Markov theorem, the dual space Co(X)* can be identified with
the space M(X) of regular complex Borel measures on X. Therefore by assumption we have
o(fn) = @(f) for all ¢ € Cy(X)*. Hence, by the Uniform Boundedness Principle (applied to the
collection of the functions f,, viewed as linear functionals Cp(X)* — C), we have sup,, || fn] < 0.
Taking p = 0, for some = € X, we also get f,,(x) — f(z), so that f,, — f pointwise.

(c) For finite positive p this follows by the Lebesgue dominated convergence theorem. As any
complex Borel measure is a linear combination of such measures, we then get the convergence in
general.

Problem 2
(a) Formulate the Fubini-Tonelli theorem.

(b) Consider the interval [0, 1] and the o-algebra B of Borel subsets of [0,1]. Let A and u be
the Lebesgue and counting measures, respectively, on ([0, 1],8). (Thus p(A) equals the number
of elements of A.) Denote by D the diagonal {(x,z)|x € [0,1]} in [0,1] x [0,1] and consider the
characteristic function xp of D.

Compute the integrals

/[071] </[071] XD(:C,y)d/\(x)> du(y) and /[071} (/[071] XD(JU,y)du(y)) d\(z).

Why the Fubini—Tonelli theorem does not apply in this case?

Solution:

(a) A short accepted formulation of the Fubini-Tonelli theorem is that if (Xy,B1, 1) and
(Xg, Ba, o) are o-finite measure spaces, f is a (B; x Bg)-measurable function on X; x Xy which is
either nonnegative or integrable with respect to p; X pa, then the integrals

/Xl><X2 fd(p x p2), /X1 ( . f(m,xz)duz(xz)) dp (1), /X2 ( . f(a:l,xQ)dul(xl)> dps(z2)
(2)

are well-defined and equal. More pedantically:



Fubini: If f: X; x X9 — C is integrable with respect to the measure uj X po, then f(-,z9) €
LY (X1, By, duy) for ps-a.e. x2, f(x1,-) € LY(Xa, Ba,dus) for pi-a.e. x1, the po-almost everywhere
defined function

x> [ fz1,22)dpn (1) 3)
X1

is integrable with respect to us, the pi-almost everywhere defined function
x| f(@1, w2)dps(x2) (4)
X2
is integrable with respect to p1, and the integrals (2) are equal.
Tonelli: If f: X; x X9 — [0,+00] is (B1 x B2)-measurable, then f(-,x2) is Bi-measurable for

all za, f(z1,-) is Ba-measurable for all z;, the function (3) is Bz-measurable, the function (4) is
Bi-measurable, and the integrals (2) are equal (but possibly infinite).

(b) We have f[o y xp(@,y)dA(z) = 0 for all y € [0, 1], hence

/ ( / xD<x,y>dA<x>) dpi(y) = 0.
[0,1] [0,1]

We also have f[o 1 xp(z,y)du(y) =1 for all = € [0, 1], hence

/ (/ XD(x’y)dﬂ(y)> dA\(z) = 1.
[0,1] \/[0,1]

The Fubini-Tonelli theorem does not apply in this case, since p is not o-finite.

Problem 3
(a) Formulate the Radon-Nikodym theorem.

(b) Consider the measures A and p from Problem 2b. Show that A < p, but there is no Radon—

Nikodym derivative %. What goes wrong with the Radon—Nikodym theorem here?

(c) Show that there is no Lebesgue decomposition of p with respect to A, that is, we cannot
write u = pq + ps, with pg < X and pg L A.

Solution:
(a) Assume v and pu are o-finite measures on a measurable space (X, B), v < p. Then there is
a B-measurable function f: X — [0, 400) such that

V(A):/fdu for all A e B.
A

The function f is essentially unique, in the sense that if f is another such function, then f = f
H-a.e.

(b) We have to show that if u(A) = 0 for a Borel set A, then A(A) = 0. This is obviously the
case, as (A) =0 only for A = 0.
Assume f is the Radon-Nikodym derivative %, so that

AMA) = / fdu=">" f(z) forall AcB.
A €A
Taking A = {z}, we conclude that f(z) =0 for all z. This implies that A\ = 0, which is nonsense.

The Radon—Nikodym theorem does not apply in this case, since y is not o-finite.
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(c) Assume there is a Lebesgue decomposition p = pg + ps. As ps L A, by definition there
is a Borel set N C [0, 1] such that A(N) = 0 and ps(N¢) = 0. Then for every z € N¢ we have
ta({z}) =0 (as A({z}) = 0) and us({z}) = 0, hence u({zx}) = 0. As p is the counting measure,
this means that N¢ = (), so that N = [0, 1], which contradicts A\(N) = 0.

Problem 4
Assume f: R™ — C is an integrable function and consider its Fourier transform

fle) = | s msa,

where £x denotes the scalar product &1 + - - - + &rxp. For k£ € N, consider also the function ¢y on
R™ defined by
o(x) = ke ™
(a) Show that the functions ¢y * f are continuous and for every point of continuity = of f we
have

(80 + f)(@) = f(2).

(b) Show that if f is continuous at 0 and f >0, then f is integrable and

/ F(&)de = £(0).
R’ﬂ

Solution: X

It is important to remember that [ ¢1(z)dz = 1 and ¢1(£) = ¢1(€). Hence [ ¢p(z)dz = 1 and
ék(f) — 6_7r§2/k2'

(a) For the first claim, since the functions ¢ are uniformly continuous, the same proof as for
compactly supported continuous functions that we had in the class works. Namely, with k fixed,

take € > 0 and choose § > 0 such that |¢r(x) — ¢r(y)| < € whenever |z — y| < § (where |z — y|
denotes the Euclidean norm). Then, if |z — y| < J, we have

(6x (@) — (% ()] = \ [ e =2 - anty — )1
< / 68z — 2) — dr(y — 2)| | (2)]dz
<e / F@)ldz =< fll.

This shows that ¢ * f is continuous, and even uniformly continuous.

Now assume that z is a point of continuity of f. Fix € > 0 and choose § > 0 such that
|f(y) — f(z)] < e whenever |y — z| < 4. As [ ¢x(z)dz = 1, we have

(60 % (&) — fl)] = \ [oste =2z - 50) [z

< /B NG ) @+ /

Bs(0)¢

Ok(2)|f(z = 2)|dz + | f(2)] or(z)dz.
Bs(0)¢
The first summand above is < € by our choice of . Let us look at the other two summands for
large k.
The second summand is not larger than

[ lfa-aide s aue) < ke,
B(;(O)c ZGB(;(O)C
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which converges to 0 as kK — oo.
The third summand equals
£ (@) e dz,
Bys(0)°
which converges to 0 as k — oo, since the function e~
To summarize, we have

is integrable.

lim sup [(¢y  f)(z) = f(2)] <&,

proving the second claim in (a), as € > 0 was arbitrary.

—

(b) As (;Aﬁk(f) = e /K iy integrable and m = ¢ f, the function ¢y * f is integrable. There-
fore by the Fourier inversion formula we have

(o * f)(x) = - m(f)e%ixfdé‘ = - f(g)efﬂfz/’ﬁe?”fﬂfdg

for almost all z. But as both sides of this equality are continuous in z (the left hand side - by
part (a), the right hand side - because the Fourier transform of an integrable function is always
continuous), we conclude that the equality holds for all . (As a side note, this is what we also
established in the proof of the Fourier inversion theorem in the class.) In particular,

(G D(O) = [ fQ)e M de.

Letting k — oo, the left hand side converges to f(0) by (a), while the right hand side converges to
[ f d¢ by the monotone convergence theorem. Hence

f0)= | f(ode.
e



