
Solutions to the exam in MAT4410, Fall 2019

Problem 1
(a) Formulate the Uniform Boundedness Principle.

(b) Let X be a locally compact space. Assume we are given functions fn (n ∈ N) and f in C0(X)
such that ∫

X
fn dµ −→

n

∫
X
f dµ (1)

for all regular complex Borel measures µ on X. Show that supn ‖fn‖ <∞ (where ‖fn‖ denotes the
supremum-norm of fn) and fn → f pointwise.

(c) Show that conversely, if fn, f ∈ C0(X) are such that supn ‖fn‖ < ∞ and fn → f pointwise,
then we have (1) for all complex Borel measures µ on X.

Solution:
(a) Assume {Ti : X → Y }i∈I is a collection of bounded linear operators between a Banach

space X and a normed space Y such that supi ‖Tix‖ <∞ for every x ∈ X. Then supi ‖Ti‖ <∞.

(b) By a corollary of the Riesz–Markov theorem, the dual space C0(X)∗ can be identified with
the space M(X) of regular complex Borel measures on X. Therefore by assumption we have
ϕ(fn) → ϕ(f) for all ϕ ∈ C0(X)∗. Hence, by the Uniform Boundedness Principle (applied to the
collection of the functions fn viewed as linear functionals C0(X)∗ → C), we have supn ‖fn‖ < ∞.
Taking µ = δx for some x ∈ X, we also get fn(x)→ f(x), so that fn → f pointwise.

(c) For finite positive µ this follows by the Lebesgue dominated convergence theorem. As any
complex Borel measure is a linear combination of such measures, we then get the convergence in
general.

Problem 2
(a) Formulate the Fubini–Tonelli theorem.

(b) Consider the interval [0, 1] and the σ-algebra B of Borel subsets of [0, 1]. Let λ and µ be
the Lebesgue and counting measures, respectively, on ([0, 1],B). (Thus µ(A) equals the number
of elements of A.) Denote by D the diagonal {(x, x)|x ∈ [0, 1]} in [0, 1] × [0, 1] and consider the
characteristic function χD of D.

Compute the integrals∫
[0,1]

(∫
[0,1]

χD(x, y)dλ(x)

)
dµ(y) and

∫
[0,1]

(∫
[0,1]

χD(x, y)dµ(y)

)
dλ(x).

Why the Fubini–Tonelli theorem does not apply in this case?

Solution:
(a) A short accepted formulation of the Fubini–Tonelli theorem is that if (X1,B1, µ1) and

(X2,B2, µ2) are σ-finite measure spaces, f is a (B1 ×B2)-measurable function on X1 ×X2 which is
either nonnegative or integrable with respect to µ1 × µ2, then the integrals∫
X1×X2

f d(µ1 × µ2),
∫
X1

(∫
X2

f(x1, x2)dµ2(x2)

)
dµ1(x1),

∫
X2

(∫
X1

f(x1, x2)dµ1(x1)

)
dµ2(x2)

(2)
are well-defined and equal. More pedantically:
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Fubini: If f : X1 × X2 → C is integrable with respect to the measure µ1 × µ2, then f(·, x2) ∈
L1(X1,B1, dµ1) for µ2-a.e. x2, f(x1, ·) ∈ L1(X2,B2, dµ2) for µ1-a.e. x1, the µ2-almost everywhere
defined function

x2 7→
∫
X1

f(x1, x2)dµ1(x1) (3)

is integrable with respect to µ2, the µ1-almost everywhere defined function

x1 7→
∫
X2

f(x1, x2)dµ2(x2) (4)

is integrable with respect to µ1, and the integrals (2) are equal.

Tonelli: If f : X1 × X2 → [0,+∞] is (B1 × B2)-measurable, then f(·, x2) is B1-measurable for
all x2, f(x1, ·) is B2-measurable for all x1, the function (3) is B2-measurable, the function (4) is
B1-measurable, and the integrals (2) are equal (but possibly infinite).

(b) We have
∫
[0,1] χD(x, y)dλ(x) = 0 for all y ∈ [0, 1], hence∫

[0,1]

(∫
[0,1]

χD(x, y)dλ(x)

)
dµ(y) = 0.

We also have
∫
[0,1] χD(x, y)dµ(y) = 1 for all x ∈ [0, 1], hence∫

[0,1]

(∫
[0,1]

χD(x, y)dµ(y)

)
dλ(x) = 1.

The Fubini–Tonelli theorem does not apply in this case, since µ is not σ-finite.

Problem 3
(a) Formulate the Radon–Nikodym theorem.

(b) Consider the measures λ and µ from Problem 2b. Show that λ� µ, but there is no Radon–
Nikodym derivative dλ

dµ . What goes wrong with the Radon–Nikodym theorem here?

(c) Show that there is no Lebesgue decomposition of µ with respect to λ, that is, we cannot
write µ = µa + µs, with µa � λ and µs ⊥ λ.

Solution:
(a) Assume ν and µ are σ-finite measures on a measurable space (X,B), ν � µ. Then there is

a B-measurable function f : X → [0,+∞) such that

ν(A) =

∫
A
f dµ for all A ∈ B.

The function f is essentially unique, in the sense that if f̃ is another such function, then f = f̃
µ-a.e.

(b) We have to show that if µ(A) = 0 for a Borel set A, then λ(A) = 0. This is obviously the
case, as µ(A) = 0 only for A = ∅.

Assume f is the Radon–Nikodym derivative dλ
dµ , so that

λ(A) =

∫
A
f dµ =

∑
x∈A

f(x) for all A ∈ B.

Taking A = {x}, we conclude that f(x) = 0 for all x. This implies that λ = 0, which is nonsense.
The Radon–Nikodym theorem does not apply in this case, since µ is not σ-finite.
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(c) Assume there is a Lebesgue decomposition µ = µa + µs. As µs ⊥ λ, by definition there
is a Borel set N ⊂ [0, 1] such that λ(N) = 0 and µs(N

c) = 0. Then for every x ∈ N c we have
µa({x}) = 0 (as λ({x}) = 0) and µs({x}) = 0, hence µ({x}) = 0. As µ is the counting measure,
this means that N c = ∅, so that N = [0, 1], which contradicts λ(N) = 0.

Problem 4
Assume f : Rn → C is an integrable function and consider its Fourier transform

f̂(ξ) =

∫
Rn
f(x)e−2πiξxdx,

where ξx denotes the scalar product ξ1x1 + · · ·+ ξnxn. For k ∈ N, consider also the function φk on
Rn defined by

φk(x) = kne−πk
2x2 .

(a) Show that the functions φk ∗ f are continuous and for every point of continuity x of f we
have

(φk ∗ f)(x) −→
k
f(x).

(b) Show that if f is continuous at 0 and f̂ ≥ 0, then f̂ is integrable and∫
Rn
f̂(ξ)dξ = f(0).

Solution:
It is important to remember that

∫
φ1(x)dx = 1 and φ̂1(ξ) = φ1(ξ). Hence

∫
φk(x)dx = 1 and

φ̂k(ξ) = e−πξ
2/k2 .

(a) For the first claim, since the functions φk are uniformly continuous, the same proof as for
compactly supported continuous functions that we had in the class works. Namely, with k fixed,
take ε > 0 and choose δ > 0 such that |φk(x) − φk(y)| < ε whenever |x − y| < δ (where |x − y|
denotes the Euclidean norm). Then, if |x− y| < δ, we have

|(φk ∗ f)(x)− (φk ∗ f)(y)| =
∣∣∣∣∫ (φk(x− z)− φk(y − z))f(z)dz

∣∣∣∣
≤
∫
|φk(x− z)− φk(y − z)| |f(z)|dz

≤ ε
∫
|f(z)|dz = ε‖f‖1.

This shows that φk ∗ f is continuous, and even uniformly continuous.

Now assume that x is a point of continuity of f . Fix ε > 0 and choose δ > 0 such that
|f(y)− f(x)| < ε whenever |y − x| < δ. As

∫
φk(z)dz = 1, we have

|(φk ∗ f)(x)− f(x)| =
∣∣∣∣∫ φk(z)f(x− z)dz − f(x)

∫
φk(z)dz

∣∣∣∣
≤
∫
Bδ(0)

φk(z)|f(x− z)− f(x)|dz +

∫
Bδ(0)c

φk(z)|f(x− z)|dz + |f(x)|
∫
Bδ(0)c

φk(z)dz.

The first summand above is < ε by our choice of δ. Let us look at the other two summands for
large k.

The second summand is not larger than∫
Bδ(0)c

|f(x− z)|dz · sup
z∈Bδ(0)c

φk(z) ≤ ‖f‖1kne−πδ
2k2 ,
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which converges to 0 as k →∞.
The third summand equals

|f(x)|
∫
Bkδ(0)c

e−πz
2
dz,

which converges to 0 as k →∞, since the function e−πz
2

is integrable.
To summarize, we have

lim sup
k
|(φk ∗ f)(x)− f(x)| ≤ ε,

proving the second claim in (a), as ε > 0 was arbitrary.

(b) As φ̂k(ξ) = e−πξ
2/k2 is integrable and φ̂k ∗ f = φ̂kf̂ , the function φ̂k ∗ f is integrable. There-

fore by the Fourier inversion formula we have

(φk ∗ f)(x) =

∫
Rn
φ̂k ∗ f(ξ)e2πixξdξ =

∫
Rn
f̂(ξ)e−πξ

2/k2e2πixξdξ

for almost all x. But as both sides of this equality are continuous in x (the left hand side - by
part (a), the right hand side - because the Fourier transform of an integrable function is always
continuous), we conclude that the equality holds for all x. (As a side note, this is what we also
established in the proof of the Fourier inversion theorem in the class.) In particular,

(φk ∗ f)(0) =

∫
Rn
f̂(ξ)e−πξ

2/k2dξ.

Letting k →∞, the left hand side converges to f(0) by (a), while the right hand side converges to∫
f̂ dξ by the monotone convergence theorem. Hence

f(0) =

∫
Rn
f̂(ξ)dξ.
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