MAT4410 (2020 AUTUMN) MANDATORY ASSIGNMENT

MAKOTO YAMASHITA

You need to upload your solution to the Canvas system, by October 30 (Friday). Solve at least one question in each section.

1. Measure theory

Problem 1. Put $X_0 = \{0, 1\}$, and consider the uniform probability measure $\mu(\{0\}) = \mu(\{1\}) = \frac{1}{2}$ on X_0 . Take the product space (the Cantor space) $X = \prod_{n=1}^{\infty} X_0$ of countable copies of X_0 , equipped with the product measure $\mu = \bigotimes \mu_0$. The goal is to show that (X, μ) is isomorphic to ([0, 1], m), where m is the (restriction of) Lebesgue measure.

- (1) Give a candidate of the comparison map $f: X \to [0, 1]$. Hint: use the idea of binary expansion. It's enough to construct a map that is bijective outside of a countable subset $A \subset X$.
- (2) Check $\mu(A) = m(f(A))$ for tubular sets $A \subset X$ (subsets of the form

$$A = Y_1 \times \dots \times Y_M \times \prod_{n=M+1}^{\infty} X_0$$

for some $Y_n \subset X_0$ for $n = 1, \ldots, M$).

- (3) Check $f_*\mu = m$. Hint: do the sets f(A) generate the σ -algebra of the Borel sets of [0, 1]?
- (4) Can you modify this construction to have a bijective map?

Problem 2. Give examples showing the importance of assumptions of Fubini's theorem:

(1) Give a measure μ on the Borel σ -algebra of [0, 1] and a bounded nonnegative Borel measurable function f on $[0, 1]^2$ such that

$$\int_{[0,1]} \int_{[0,1]} f(x,y) d\mu(x) dm(y) \neq \int_{[0,1]} \int_{[0,1]} f(x,y) dm(y) d\mu(x)$$

for the Lebesgue measure m.

(2) Give a measurable function f on $[0, 1]^2$ such that

$$\int_{[0,1]} \int_{[0,1]} f(x,y) dm(x) dm(y) \neq \int_{[0,1]} \int_{[0,1]} f(x,y) dm(y) dm(x).$$

Problem 3. Let X and Y be independent (real) random variables on some sample space (Ω, \mathbb{P}) . How do you model the joint distribution of (X, Y) by a product measure space?

Hint: X as a measurable map $\Omega \to \mathbb{R}$ defines a measure μ_X on \mathbb{R} by $\mu_X(A) = \mathbb{P}[X(\omega) \in A]$ for Borel subsets $A \subset \mathbb{R}$.

Problem 7. Let (X, \mathcal{M}, μ) be a σ -finite measure space, and $f: X \to [0, \infty]$ be a nonnegative measurable function. Put

$$G_f = \{(x, y) \in X \times [0, \infty] \mid y \le f(x)\}.$$

(This can be interpreted as the region between X-axis and the graph of f.) Show that the (restriction of) Lebesgue measure m on $[0, \infty]$ satisfies $(\mu \otimes m)(G_f) = \int f d\mu$. Hint: what is $\int_{[0,\infty]} 1_{G_f}(x, y) dm(y)$?

2. L^p and Banach spaces

Problem 4. Let (Ω, μ) be a measure space and $1 . The goal here is to understand that <math>L^p(\Omega, \mu)$ is uniformly convex as a normed vector space: for any $\epsilon > 0$ there is $\delta > 0$ such that, if $x, y \in L^p(\Omega, \mu)$ are unit vectors satisfying $||x + y||_p > 2 - \delta$, then $||x - y||_p < \epsilon$.

(1) A proof is given in [O. Hanner, On the uniform convexity of L^p and l^p , Ark. Mat. **3** (1956), 239–244.]. Extract the ingredients of the proof for the case 1 .

Date: 20.10.2020 (v2).

- (2) Show that $L^1(\Omega,\mu)$ and $L^{\infty}(\Omega,\mu)$ do not have the uniform convexity (unless they are 1-dimensional).
- (3) Show that $L^1(\Omega, \mu)$ and $L^{\infty}(\Omega, \mu)$ are not (isometrically) isomorphic to a subspace of $L^p(\Omega', \mu')$ for any (Ω', μ') .

Problem 5. Give example of functionals on $C_c(\mathbb{R})$ satisfying the following conditions:

- (1) continuous for the norm $||f||_{\infty}$, but not for $||f||_p$ for any of $1 \le p < \infty$
- (2) continuous for the norm $||f||_2$, but not for $||f||_{\infty}$.

Extra: is there a bounded functional ψ on $C_b(\mathbb{R})$ satisfying $\psi(f) = \psi(\tau_t f)$ for all $t \in \mathbb{R}$, where $(\tau_t f)(x) = f(x+t)$?

Problem 6. Consider the quotient space $X = \ell^{\infty}(\mathbb{N})/c_0(\mathbb{N})$.

- (1) show that there is a functional ψ of norm 1 on X satisfying $\psi((a_n)_{n \in \mathbb{N}}) = c$ if $a_n = c$ for all n. Hint: first look at the 1-dimensional subspace spanned by the constant sequences.
- (2) show that $\psi((a_n)_{n\in\mathbb{N}}) = \lim a_n$ if $(a_n)_{n\in\mathbb{N}}$ is a convergent sequence. Hint: can you describe the convergent sequences in $\ell^{\infty}(\mathbb{N})$ using the constant sequences and $C_0(\mathbb{N})$?

Problem 8. What is wrong with the following argument?: Let X be the space of functions on [0, 1] represented by polynomials with real coefficients. We make it a normed vector space by $||p||_{\infty} = \max_{0 \le t \le 1} |p(t)|$. Consider the maps

$$D_n \colon X \to \mathbb{R}, \quad D_n(p) = \frac{d^n p}{dt^n}(1).$$

For any given $p \in X$, we have $D_n(p) = 0$ for sufficiently large n. In particular, $|D_n(p)|$ for n = 0, 1, ... are bounded. By Uniform Boudedness Principle, $||D_n||$ for n = 0, 1, ... are bounded (say, by a constant C > 0). Looking at the functions $p_n(t) = t^n$, we have $||p_n||_{\infty} = 1$ and $D_n(p_n) = n!$. So $n! \leq C$ holds for all n.