## MAT4410 (2020 AUTUMN) MANDATORY ASSIGNMENT

MAKOTO YAMASHITA

You need to upload your solution to the Canvas system, by October 30 (Friday). Solve at least one question in each section.

## 1. Measure theory

Problem 1. Put $X_{0}=\{0,1\}$, and consider the uniform probability measure $\mu(\{0\})=\mu(\{1\})=\frac{1}{2}$ on $X_{0}$. Take the product space (the Cantor space) $X=\prod_{n=1}^{\infty} X_{0}$ of countable copies of $X_{0}$, equipped with the product measure $\mu=\otimes \mu_{0}$. The goal is to show that $(X, \mu)$ is isomorphic to $([0,1], m)$, where $m$ is the (restriction of) Lebesgue measure.
(1) Give a candidate of the comparison map $f: X \rightarrow[0,1]$. Hint: use the idea of binary expansion. It's enough to construct a map that is bijective outside of a countable subset $A \subset X$.
(2) Check $\mu(A)=m(f(A))$ for tubular sets $A \subset X$ (subsets of the form

$$
A=Y_{1} \times \cdots \times Y_{M} \times \prod_{n=M+1}^{\infty} X_{0}
$$

for some $Y_{n} \subset X_{0}$ for $\left.n=1, \ldots, M\right)$.
(3) Check $f_{*} \mu=m$. Hint: do the sets $f(A)$ generate the $\sigma$-algebra of the Borel sets of $[0,1]$ ?
(4) Can you modify this construction to have a bijective map?

Problem 2. Give examples showing the importance of assumptions of Fubini's theorem:
(1) Give a measure $\mu$ on the Borel $\sigma$-algebra of $[0,1]$ and a bounded nonnegative Borel measurable function $f$ on $[0,1]^{2}$ such that

$$
\int_{[0,1]} \int_{[0,1]} f(x, y) d \mu(x) d m(y) \neq \int_{[0,1]} \int_{[0,1]} f(x, y) d m(y) d \mu(x)
$$

for the Lebesgue measure $m$.
(2) Give a measurable function $f$ on $[0,1]^{2}$ such that

$$
\int_{[0,1]} \int_{[0,1]} f(x, y) d m(x) d m(y) \neq \int_{[0,1]} \int_{[0,1]} f(x, y) d m(y) d m(x) .
$$

Problem 3. Let $X$ and $Y$ be independent (real) random variables on some sample space $(\Omega, \mathbb{P})$. How do you model the joint distribution of $(X, Y)$ by a product measure space?
Hint: $X$ as a measurable map $\Omega \rightarrow \mathbb{R}$ defines a measure $\mu_{X}$ on $\mathbb{R}$ by $\mu_{X}(A)=\mathbb{P}[X(\omega) \in A]$ for Borel subsets $A \subset \mathbb{R}$.

Problem 7. Let $(X, \mathcal{M}, \mu)$ be a $\sigma$-finite measure space, and $f: X \rightarrow[0, \infty]$ be a nonnegative measurable function. Put

$$
G_{f}=\{(x, y) \in X \times[0, \infty] \mid y \leq f(x)\}
$$

(This can be interpreted as the region between $X$-axis and the graph of $f$.) Show that the (restriction of) Lebesgue measure $m$ on $[0, \infty]$ satisfies $(\mu \otimes m)\left(G_{f}\right)=\int f d \mu$.
Hint: what is $\int_{[0, \infty]} 1_{G_{f}}(x, y) d m(y)$ ?

## 2. $L^{p}$ and Banach spaces

Problem 4. Let $(\Omega, \mu)$ be a measure space and $1<p<\infty$. The goal here is to understand that $L^{p}(\Omega, \mu)$ is uniformly convex as a normed vector space: for any $\epsilon>0$ there is $\delta>0$ such that, if $x, y \in L^{p}(\Omega, \mu)$ are unit vectors satisfying $\|x+y\|_{p}>2-\delta$, then $\|x-y\|_{p}<\epsilon$.
(1) A proof is given in [O. Hanner, On the uniform convexity of $L^{p}$ and $l^{p}$, Ark. Mat. 3 (1956), 239-244.]. Extract the ingredients of the proof for the case $1<p<2$.

[^0](2) Show that $L^{1}(\Omega, \mu)$ and $L^{\infty}(\Omega, \mu)$ do not have the uniform convexity (unless they are 1-dimensional).
(3) Show that $L^{1}(\Omega, \mu)$ and $L^{\infty}(\Omega, \mu)$ are not (isometrically) isomorphic to a subspace of $L^{p}\left(\Omega^{\prime}, \mu^{\prime}\right)$ for any $\left(\Omega^{\prime}, \mu^{\prime}\right)$.
Problem 5. Give example of functionals on $C_{c}(\mathbb{R})$ satisfying the following conditions:
(1) continuous for the norm $\|f\|_{\infty}$, but not for $\|f\|_{p}$ for any of $1 \leq p<\infty$
(2) continuous for the norm $\|f\|_{2}$, but not for $\|f\|_{\infty}$.

Extra: is there a bounded functional $\psi$ on $C_{b}(\mathbb{R})$ satisfying $\psi(f)=\psi\left(\tau_{t} f\right)$ for all $t \in \mathbb{R}$, where $\left(\tau_{t} f\right)(x)=$ $f(x+t)$ ?
Problem 6. Consider the quotient space $X=\ell^{\infty}(\mathbb{N}) / c_{0}(\mathbb{N})$.
(1) show that there is a functional $\psi$ of norm 1 on $X$ satisfying $\psi\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=c$ if $a_{n}=c$ for all $n$. Hint: first look at the 1-dimensional subspace spanned by the constant sequences.
(2) show that $\psi\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\lim a_{n}$ if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence. Hint: can you describe the convergent sequences in $\ell^{\infty}(\mathbb{N})$ using the constant sequences and $C_{0}(\mathbb{N})$ ?

Problem 8. What is wrong with the following argument?: Let $X$ be the space of functions on $[0,1]$ represented by polynomials with real coefficients. We make it a normed vector space by $\|p\|_{\infty}=$ $\max _{0 \leq t \leq 1}|p(t)|$. Consider the maps

$$
D_{n}: X \rightarrow \mathbb{R}, \quad D_{n}(p)=\frac{d^{n} p}{d t^{n}}(1)
$$

For any given $p \in X$, we have $D_{n}(p)=0$ for sufficiently large $n$. In particular, $\left|D_{n}(p)\right|$ for $n=0,1, \ldots$ are bounded. By Uniform Boudedness Principle, $\left\|D_{n}\right\|$ for $n=0,1, \ldots$ are bounded (say, by a constant $C>0$ ). Looking at the functions $p_{n}(t)=t^{n}$, we have $\left\|p_{n}\right\|_{\infty}=1$ and $D_{n}\left(p_{n}\right)=n!$. So $n!\leq C$ holds for all $n$.


[^0]:    Date: 20.10.2020 (v2).

