MAT4410 (2020 AUTUMN) EXERCISE SET 3

MAKOTO YAMASHITA

Problem 5 (Mean value inequality for vector valued functions, Exercise 25.4). Let X be a Banach space, $a<b$ be real numbers, and $f(x), f^{\prime}(x)$ be X-valued functions defined on $a \leq x \leq b$ such that

$$
f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \quad(a<t<b) .
$$

(That is, $f(x)$ is an X-valued C^{1}-class function on $a \leq x \leq b$.) We want to show

$$
\|f(b)-f(a)\| \leq \int_{a}^{b}\left\|f^{\prime}(t)\right\| d t\left(\leq(b-a) \sup _{x}\left\|f^{\prime}(x)\right\|\right)
$$

(1) Use the Hahn-Banach theorem to estimate $\|f(b)-f(a)\|$ in terms of $\phi(f(b))$ and $\phi(f(a))$ for $\phi \in X^{*}$ (with $\|\phi\| \leq 1$ if you want).
(2) Use (1) and the usual mean value inequality for scalar valued functions $\phi(f(x))$ to get the above inequality.

Problem 6 (Exercise 25.7). Let X be a normed vector space, and $M \subset X$ be a finite dimensional subspace. We want to show that there is a closed subspace $N \subset X$ such that $X=M \oplus N$ (that is, M is a complemented subspace).
(1) When M is 1-dimensional, find N as the kernel of a suitable functional on X. (You want to use the Hahn-Banach theorem here.)
(2) How do you extend (1) to finite dimensional case in general?

