MAT4410 (2020 AUTUMN) MOCK EXAM

MAKOTO YAMASHITA

Problem 1. (1) Give a measure-theoretic justification for the following argument. Suppose that $D \subset \mathbb{R}^{2}$ has a decomposition $D=\bigcup_{i=1}^{\infty}\left[a_{i}, b_{i}\right) \times\left[c_{i}, d_{i}\right)$ for some numbers $a_{i}, b_{i}, c_{i}, d_{i}(i=1,2, \ldots)$. Then the area of D is given by $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right) \times\left(d_{i}-c_{i}\right)$.
(2) Give a concrete computation of the area of $D=\{(x, y) \mid 0 \leq x, y, x+y<1\} \subset \mathbb{R}^{2}$ following the above argument.
(3) What is wrong with the following argument?: Given $D \subset \mathbb{R}^{2}$, we put $D_{x}=\{y \in \mathbb{R} \mid(x, y) \in D\}$. Then $D^{x}=\{x\} \times D_{x}$ is a subset of $\{x\} \times \mathbb{R}$, but the latter is a straight line in \mathbb{R} and should have the area 0 . Then D^{x} also has the area 0 . Since $D=\bigcup_{x \in \mathbb{R}} D^{x}$, the area of D is just the sum of 0 's, which is 0 .

Problem 2. (1) Explain the measure-theoretic framework for manipulations of the form

$$
\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} f_{n}(x) d x=\int_{-\infty}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) d x
$$

(Give the relevant measure spaces also.)
(2) Explain when you can justify this manipulation.

Problem 3. Consider the sequence of real functions given by

$$
f_{n}(x)= \begin{cases}n|x| & \left(|x| \leq \frac{1}{n}\right) \\ 1 & \left(\frac{1}{n}<|x| \leq 1\right) \\ 2-|x| & (1<|x| \leq 2) \\ 0 & (2<|x|) .\end{cases}
$$

(1) Find the limit $f \in C_{c}(\mathbb{R})$ with respect to the 2-norm topology.
(2) We do not have $\lim _{n} f_{n}(0)=f(0)$, but why is it compatible with the above convergence in the 2-norm topology?
Problem 4. Consider the signed measure μ on \mathbb{R} given by

$$
\mu(A)=\int_{A} e^{-x^{2}} \sin x d x+\delta_{0}(A)
$$

(1) What is the Jordan decomposition for μ ?
(2) What is the Lebesgue decomposition relative to the Lebesgue measure on \mathbb{R} give for the result of above?

To score better, answer one of the following problems.
Problem 5. Compute the area of $D \subset[0,1]^{2}$ given by the following procedure.
(1) Set $D_{0}=[0,1]^{2}$.
(2) Divide D_{0} into 9 equal small squares, and remove the middle one. Call the remaining part D_{1}.
(3) Divide each small square (from the previous step) in D_{1} again into 9 small squares, and remove the middle one. Call the union of the remaining squares D_{2}.
(4) Repeat this process and inductively define $D_{3} \supset D_{4} \supset \ldots$.
(5) Set $D=\bigcap_{n} D_{n}$.

Problem 6. Recall that the characteristic function ϕ_{X} of a random variable X is given by $\phi_{X}(t)=$ $\mathbb{E}\left[e^{i t X}\right]$. Given independent random variables X and Y, show $\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)$.

