1. Assume X is a normed vector space and $A \subset X$ is a convex subset with nonempty interior. Show that the interior of A is convex and dense in A.
2. Consider a finite dimensional normed vector space X. Assume $A \subset X$ is a convex subset such that $0 \in A$ and the linear span of A is the entire space X. Show that the interior of A is not empty.

Applications of the Hahn-Banach theorem

3. Let p_{1}, \ldots, p_{n} be seminorms on a vector space X. Assume f is a linear functional on X such that $|f(x)| \leq \sum_{k=1}^{n} p_{k}(x)$ for all $x \in X$. Show that there exist linear functionals f_{k} such that $f=\sum_{k=1}^{n} f_{k}$ and $\left|f_{k}(x)\right| \leq p_{k}(x)$ for all $x \in X$ and $k=1, \ldots, n$.

Hint: consider the space X^{n} and its subspace consisting of the vectors $(x, \ldots, x), x \in X$.
4. Let X be an infinite dimensional normed space.
(i) Construct by induction vectors $x_{n} \in X$ and linear functionals $f_{n} \in X^{*}$ such that $\left\|x_{n}\right\|=\left\|f_{n}\right\|=f_{n}\left(x_{n}\right)=1$ for all n and $f_{n}\left(x_{m}\right)=0$ for all $n<m$.
(ii) Show that if X is complete, then there exists an injective linear map $\ell^{\infty} \rightarrow X$.
(iii) Show that the vector space ℓ^{∞} has a continuum of linearly independent vectors.

Conclude that any infinite dimensional Banach space has at least a continuum of linearly independent vectors.

Applications of the Baire category theorem

5. Show that the subset $D \subset C[a, b]$ of functions differentiable at least at one point is meager (in the supremum norm), that is, it is a countable union of nowhere dense sets. Conclude that the continuous functions that are not differentiable at any point are dense in $C[a, b]$.

Hint: observe that $D \subset \cup_{n} D_{n}$, where

$$
D_{n}=\left\{f:\left|f(x)-f\left(x_{0}\right)\right| \leq n\left|x-x_{0}\right| \text { for some } x_{0} \text { and all } x\right\} .
$$

6. Let X and Y be complete metric spaces and $f: X \times Y \rightarrow \mathbb{C}$ be a function that is continuous in each variable. Show that there exists a point of continuity of f. Conclude that the set of points of continuity of f is dense in $X \times Y$.

Hint: for $\varepsilon>0$, consider the sets $A_{n} \subset X \times Y$ consisting of points $\left(x_{0}, y_{0}\right)$ such that $\left|f\left(x_{0}, y_{0}\right)-f\left(x, y_{0}\right)\right|<\varepsilon$ and $\left|f\left(x_{0}, y_{0}\right)-f\left(x_{0}, y\right)\right|<\varepsilon$ whenever $d\left(x, x_{0}\right)<1 / n$ and $d\left(y, y_{0}\right)<$ $1 / n$, and observe that $\cup_{n} A_{n}=X \times Y$.

