Applications of the open mapping theorem and the uniform boundedness principle

1. Let X be a Banach space. A subspace $Y \subset X$ is called *complemented* if there exists a closed subspace $Z \subset X$ such that X is the direct sum of Y and Z in the usual linear algebraic sense (in other words, Y + Z = X and $Y \cap Z = 0$). Then Z is called complementary to Y.

(i) Show that if Y and Z are complementary closed subspaces, then there is C > 0 such

$$||y|| + ||z|| \le C||y+z||$$

for all $y \in Y$ and $z \in Z$. It follows that the projection $P: X \to Y$ of X onto Y along Z (that is, P(y+z) = y) is a bounded linear operator.

(ii) Show that conversely, if there is a bounded projection $P: X \to Y$ (that is, P is a bounded surjective linear operator and Py = y for $y \in Y$), then ker P and Y are complementary to each other.

2. Assume X and Y are Banach spaces and $T: X \to Y$ is a linear operator such that $f \circ T \in X^*$ for every $f \in Y^*$. Show that T is bounded.

3. Assume X and Y are Banach spaces and $\{T_n\}_n$ is a sequence of bounded linear operators $X \to Y$ such that the limit $Tx = \lim_n T_n x \in Y$ exists for every $x \in X$. Show that $T: X \to Y$ is a bounded linear operator.

4. Show by induction on n that if $B: X_1 \times \cdots \times X_n \to Y$ is a map of Banach spaces that is continuous and linear in each variable, then there exists C > 0 such that

$$||B(x_1,\ldots,x_n)|| \le C||x_1||\ldots||x_n||$$

for all $x_1 \in X_1, ..., x_n \in X_n$. (The case n = 2 was done in the class.)

Measure theory

5. Consider the completion $(X, \hat{\mathcal{B}}, \bar{\mu})$ of a measure space (X, \mathcal{B}, μ) . Show that for any $\bar{\mathcal{B}}$ -measurable function f on X, there exists a \mathcal{B} -measurable function \tilde{f} such that $f = \tilde{f} \bar{\mu}$ -a.e. Hint: consider first $f \geq 0$.

6. Assume \mathcal{B} is an algebra of subsets of X and μ is a finite premeasure on (X, \mathcal{B}) . Let μ^* be the corresponding outer measure on X. Recall that a subset $A \subset X$ is called Caratheodory measurable if

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A)$$
 for all subsets $B \subset X$.

Denote by \mathcal{C} the collection of all Caratheodory measurable sets and recall that Caratheodory's theorem states that \mathcal{C} is a σ -algebra containing \mathcal{B} and $\mu^*|_{\mathcal{C}}$ is a measure extending μ .

(i) Show that $(X, \mathcal{C}, \mu^*|_{\mathcal{C}})$ coincides with the completion of $(X, \sigma(\mathcal{B}), \mu^*|_{\sigma(\mathcal{B})})$, where $\sigma(\mathcal{B})$ is the σ -algebra generated by \mathcal{B} . Therefore \mathcal{C} is generated as a σ -algebra by \mathcal{B} and the sets of outer measure zero.

(ii) Show that a subset $A \subset X$ lies in $\mathcal{C} = \overline{\sigma(\mathcal{B})}$ if and only if for every $\varepsilon > 0$ there exists $B \in \mathcal{B}$ such that $\mu^*(A\Delta B) < \varepsilon$.

(iii) Show independently of (ii) and Caratheodory's theorem that if ν is a measure on $\sigma(\mathcal{B})$ extending μ , then for every $A \in \sigma(\mathcal{B})$ and $\varepsilon > 0$ there exists $B \in \mathcal{B}$ satisfying $\nu(A\Delta B) < \varepsilon$.

7. Let $(X_1, \mathcal{B}_1, \mu_1)$ and $(X_2, \mathcal{B}_2, \mu_2)$ be σ -finite measure spaces.

(i) Show using parts (ii) or (iii) from the previous exercise that for every set $A \in \mathcal{B}_1 \times \mathcal{B}_2$ such that $(\mu_1 \times \mu_2)(A) < \infty$ and every $\varepsilon > 0$ there exists a set $B \subset X_1 \times X_2$ that is a finite disjoint union of sets of the form $B_1 \times B_2$, with $B_i \in \mathcal{B}_i$ and $\mu_i(B_i) < \infty$, such that $(\mu_1 \times \mu_2)(A \Delta B) < \varepsilon$.

(ii) Take $1 \le p < \infty$. Show that the subspace of $L^p(X_1 \times X_2, \mathcal{B}_1 \times \mathcal{B}_2, d(\mu_1 \times \mu_2))$ spanned by functions of the form $(x_1, x_2) \mapsto f_1(x_1)f_2(x_2)$, with $f_i \in L^p(X_i, \mathcal{B}_i, d\mu_i)$, is dense.

Warning: this is not true for $p = \infty$.

8. Let $(X_1, \mathcal{B}_1, \mu_1)$ and $(X_2, \mathcal{B}_2, \mu_2)$ be σ -finite complete measure spaces. Consider the measure $\mu_1 \times \mu_2$ and denote by μ its completion.

(i) Show that if $A \subset X_1 \times X_2$ is a set of μ -measure zero, then for μ_1 -a.e. x the set $A(x_1) = \{x_2 \mid (x_1, x_2) \in A\}$ has μ_2 -measure zero.

(ii) Formulate and prove analogues of the Tonelli and Fubini theorems for the measure μ . Hint: use (i) and Exercise 5.