Suggested solution to the exam in M AT4410, December 5, 2023.

Problem 1. Part la: it is routine to verify that v is o-additive and that
v(A) = whenever p(A) = 0. Recall that we defined the Jordan decomposition
of a signed measure v as
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Moreover, we have v = v, —v_ and vy | v_, and v, ,v_ form the smallest
possible decomposition of v this form. Now, given v as in the problem, we
have that (using a result proved even in the case of complex measures),
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Since v = v; — vy with v, v_ mutually singular measures, using for example
Xy ={zreX | f(zr) >0}, v (X;) =0=rv(X\X;), and since v; > vy,
vy > v_, we see that these inequalities must be equalities.

Part 1b: A Hahn-decomposition is X; = (0,2], X_ = [2,4]. The Jordan
decomposition is determined by
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Problem 2. For 2a, to show that A = {(z,r) € X x [0,00) | |f(z)| > r} is
measurable with respect to the product o-algebra, note for example that
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which is a countable union of measurable rectangles and therefore belongs to
¥ ® B. Alternatively, use the bootstrap technique: suppose that g = 1g for
E € %, then the corresponding set A(1g) is £ x [0, 1), which is in the product
o-algebra. Extend to g = > ;ajlg,, asimple function in standard form, then
A(f) is the union of E; x [0, ;). Finally, for g nonnegative, approximate with
a nondecreasing sequence s,, of simple functions that converges pointwise to
g, and write A(g) again as a countable union of measurable rectangles.

For 2b, define h : X x [0,00) — [0,00) by h(z,7) = 1a(z,7)p(r). Since



the measures are o-finite, Tonelli’s theorem applies and gives that
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Problem 3. This is an application of the closed graph theorem: if x, — =
and P(z,) — y, then y € P(X) since the range of P is closed, as a subspace
of Y, thus y = P(z) for some z € X. Moreover, z,, — P(z,) € ker(P) for
all n > 1, so its limit x — y is in ker(P). Then P(x) = P(y) = P(P(z)) =
P(z) =y, as wanted.

Problem 4. Part 4a. Let x € X and ¢, be Dirac measure. Given A C X and
U open such that A C U we have inf §,(U) = §,(A), with the value being 0
or 1 depending on whether or not x € A. Inner regularity is routine, as well.
To show that supp(d,) = {z}, clearly 6,(U) > 0 for all open U containing
x, so z is in the support of u. Assume there is y # = with y € supp(d,),
then there are disjoint open sets U,V with y € V,x € U. Then u(V) > 0,
however this is a contradiction as x ¢ V. So the support is exactly {z}.
The functional on Cy(X ) associated With d, is the evaluation £,(f) = f(z),
for f € Co(X): that f(z) = [ f is true for simple functions, then
for arbitrary f we can ﬁnd a Sequence {sn}n of simple functions such that
f(t) = lim,, s,(t) uniformly on the support of f, so also f(z) = [ f
and by the uniqueness claim in the Riesz-Markov theorem we obtam that the
evaluation functional ¢, corresponds to the measure ¢,.

For 4a, assume that p is a finite regular measure with support the single
point {z}. From 4a we know that the measure C'd, has support {z} for every
constant C' > 0. Since X is locally compact, there is K compact with = ¢ K.
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Given y € K we have y ¢ supp(u), so there is an open set V, with = € V,, and
(V) = 0. Cover K with U,cxV, and extract a finite cover, then conclude
that pu(K) = 0. By inner regularity, we get p(A) = 0 for all A Borel set with
the property that z ¢ A. If now A is a Borel set so that z € A, we get by the
previous that u(A \ {z}) = 0. Since the measure is finite, u(A) = u({z}).
Let C' = p({z}). We have that u(A) = C9,(A) for all Borel sets A. Since
also C' = p(X), we have C' > 0.

Problem 5. Part Ha: see lectures.

Let A be the Lebesgue measure on [0, 1] and let L' ([0, 1], A) be the Banach
space of complex-valued integrable functions on [0, 1]. Suppose that { fx}r>1
is a sequence of elements in L'([0, 1], \) and {ay }x>1 is a sequence of complex
numbers sequence of complex numbers such that there exists M > 0 with
the property that
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for any finite sequence of complex numbers aq, ..., a,, and any m > 1. Show
that there is g € L>([0, 1], A) such that
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Solution: Let Y = span{f; | k > 1}, a linear subspace of L!([0,1]).
Define ¢y : Y — C by
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for arbitrary complex numbers aq, ..., a,, and m > 1. This is a linear map,
as may be verified routinely (you need to fill in details), and the assumption
gives that ¢q is bounded with |¢g|| < M. By the Hahn-Banach theorem
there is an extension ¢ € L'([0,1])*. Since L(]0,1])* = L*>([0,1]) by the
Riesz representation theorem, there is a function g € L>([0, 1]) such that
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for every f € L'([0,1]). Hence [, fr(z)g(z)d\(z) = wo(fx) = ay for all
k > 1 because ¢ extends .



