
Suggested solution to the exam in MAT4410, December 5, 2023.

Problem 1. Part 1a: it is routine to verify that ν is σ-additive and that
ν(A) = whenever µ(A) = 0. Recall that we defined the Jordan decomposition
of a signed measure ν as

ν+(A) =
|ν|(A) + ν(A)

2
and ν−(A) =

|ν|(A)− ν(A)

2
.

Moreover, we have ν = ν+ − ν− and ν+ ⊥ ν−, and ν+, ν− form the smallest
possible decomposition of ν this form. Now, given ν as in the problem, we
have that (using a result proved even in the case of complex measures),

|ν|(A) =
∫
A

|f |dµ =

∫
A

f+dµ+

∫
A

f−dµ = ν1(A) + ν2(A).

Since ν = ν1 − ν2 with ν+, ν− mutually singular measures, using for example
X+ = {x ∈ X | f(x) ≥ 0}, ν−(X+) = 0 = ν+(X \ X+), and since ν1 ≥ ν+,
ν2 ≥ ν−, we see that these inequalities must be equalities.

Part 1b: A Hahn-decomposition is X+ = (0, 2], X− = [2, 4]. The Jordan
decomposition is determined by

ν+(A) =

∫
A

1(0,2]x cos(
πx

4
)dx, ν−(A) =

∫
A

1[2,4]x cos(
πx

4
)dx.

Problem 2. For 2a, to show that A = {(x, r) ∈ X × [0,∞) | |f(x)| > r} is
measurable with respect to the product σ-algebra, note for example that

A =
⋃
a∈Q

|f |−1((a,∞))× [0, a),

which is a countable union of measurable rectangles and therefore belongs to
Σ⊗ B. Alternatively, use the bootstrap technique: suppose that g = 1E for
E ∈ Σ, then the corresponding set A(1E) is E× [0, 1), which is in the product
σ-algebra. Extend to g =

∑
j αj1Ej

, a simple function in standard form, then
A(f) is the union of Ei× [0, αi). Finally, for g nonnegative, approximate with
a nondecreasing sequence sn of simple functions that converges pointwise to
g, and write A(g) again as a countable union of measurable rectangles.

For 2b, define h : X × [0,∞) → [0,∞) by h(x, r) = 1A(x, r)ϕ(r). Since
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the measures are σ-finite, Tonelli’s theorem applies and gives that∫
X×[0,∞)

h(x, r) d(µ× λ)(x, r) =

∫
[0,∞)

ϕ(r)
(∫

X

1A(r)(x, r) dµ(x)
)
dλ(r)

=

∫
[0,∞)

ϕ(r)µ({x ∈ X | |f(x)| > r})dλ(r)

=

∫
[0,∞)

ϕ(r)Ef (r)dλ(r)

=

∫
X

(∫
[0,∞)

h(x, r)dλ(r)
)
dµ(x)

=

∫
X

(∫
[0,∞)

ϕ(r)1{r|0≤r<|f(x|)}dλ(r)
)
dµ(x)

=

∫
X

(∫
[0,|f(x)|]

ϕ(r)dλ(r)
)
dµ(x)

=

∫
X

(F ◦ |f |)dµ.

Problem 3. This is an application of the closed graph theorem: if xn → x
and P (xn) → y, then y ∈ P (X) since the range of P is closed, as a subspace
of Y , thus y = P (z) for some z ∈ X. Moreover, xn − P (xn) ∈ ker(P ) for
all n ≥ 1, so its limit x − y is in ker(P ). Then P (x) = P (y) = P (P (z)) =
P (z) = y, as wanted.

Problem 4. Part 4a. Let x ∈ X and δx be Dirac measure. Given A ⊂ X and
U open such that A ⊂ U we have inf δx(U) = δx(A), with the value being 0
or 1 depending on whether or not x ∈ A. Inner regularity is routine, as well.
To show that supp(δx) = {x}, clearly δx(U) > 0 for all open U containing
x, so x is in the support of µ. Assume there is y ̸= x with y ∈ supp(δx),
then there are disjoint open sets U, V with y ∈ V, x ∈ U . Then µ(V ) > 0,
however this is a contradiction as x /∈ V . So the support is exactly {x}.
The functional on C0(X) associated with δx is the evaluation ℓx(f) = f(x),
for f ∈ C0(X): that f(x) =

∫
X
f(t)dδx(t) is true for simple functions, then

for arbitrary f we can find a sequence {sn}n of simple functions such that
f(t) = limn sn(t) uniformly on the support of f , so also f(x) =

∫
X
f(t)dδx(t),

and by the uniqueness claim in the Riesz-Markov theorem we obtain that the
evaluation functional ℓx corresponds to the measure δx.

For 4a, assume that µ is a finite regular measure with support the single
point {x}. From 4a we know that the measure Cδx has support {x} for every
constant C > 0. Since X is locally compact, there is K compact with x /∈ K.
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Given y ∈ K we have y /∈ supp(µ), so there is an open set Vx with x ∈ Vx and
µ(Vx) = 0. Cover K with ∪x∈KVx and extract a finite cover, then conclude
that µ(K) = 0. By inner regularity, we get µ(A) = 0 for all A Borel set with
the property that x /∈ A. If now A is a Borel set so that x ∈ A, we get by the
previous that µ(A \ {x}) = 0. Since the measure is finite, µ(A) = µ({x}).
Let C = µ({x}). We have that µ(A) = Cδx(A) for all Borel sets A. Since
also C = µ(X), we have C > 0.

Problem 5. Part 5a: see lectures.
Let λ be the Lebesgue measure on [0, 1] and let L1([0, 1], λ) be the Banach

space of complex-valued integrable functions on [0, 1]. Suppose that {fk}k≥1

is a sequence of elements in L1([0, 1], λ) and {ak}k≥1 is a sequence of complex
numbers sequence of complex numbers such that there exists M > 0 with
the property that

|
m∑
k=1

αkak| ≤ M
(∫

[0,1]

|
m∑
k=1

αkfk(x)|dλ(x)
)

for any finite sequence of complex numbers α1, . . . , αm and any m ≥ 1. Show
that there is g ∈ L∞([0, 1], λ) such that∫

[0,1]

fk(x)g(x)dλ(x) = ak, ∀k ≥ 1.

Solution: Let Y = span{fk | k ≥ 1}, a linear subspace of L1([0, 1]).
Define φ0 : Y → C by

φ0(
m∑
k=1

αkfk) =
m∑
k=1

αkak

for arbitrary complex numbers α1, . . . , αm and m ≥ 1. This is a linear map,
as may be verified routinely (you need to fill in details), and the assumption
gives that φ0 is bounded with ∥φ0∥ ≤ M . By the Hahn-Banach theorem
there is an extension φ ∈ L1([0, 1])∗. Since L1([0, 1])∗ ∼= L∞([0, 1]) by the
Riesz representation theorem, there is a function g ∈ L∞([0, 1]) such that

φ(f) =

∫
[0,1]

fgdλ

for every f ∈ L1([0, 1]). Hence
∫
[0,1]

fk(x)g(x)dλ(x) = φ0(fk) = ak for all

k ≥ 1 because φ extends φ0.
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