UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in	MAT4410 — Advanced linear analysis.
Day of examination:	Tuesday, December 5, 2023.
Examination hours:	15:00-19:00.
This problem set consists of 3 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: You must justify all your answers.

Problem 1

1a

(10 points.) Let (X, \mathcal{A}, μ) be a measure space with μ a positive σ -finite measure and let $f : X \to \mathbb{R}$ be an integrable function. Explain why $\nu(A) := \int_A f d\mu$ for $A \in \mathcal{A}$ defines a signed measure satisfying $\nu \ll \mu$. Define positive measures by

$$\nu_1(A) = \int_A f^+ d\mu$$
 and $\nu_2(A) = \int_A f^- d\mu$, for $A \in \mathcal{A}$.

Prove that $\nu = \nu_1 - \nu_2$ is the Jordan decomposition of the measure ν .

1b

(10 points.) Let μ be Lebesgue measure on the σ -algebra \mathcal{A} of Borel subsets of X = (0, 4] and let $f(x) = x \cos(\frac{\pi x}{4})$. Determine a Hahn decomposition $X = X_+ \sqcup X_-$ and the Jordan decomposition for the measure ν given by $\nu(A) = \int_A f(x) d\mu(x)$ for $A \in \mathcal{A}$.

Problem 2

Let (X, Σ, μ) be a σ -finite measure space and let λ be Lebesgue measure on the Borel σ -algebra \mathcal{B} of subsets of $[0, \infty)$. Suppose that $\phi : [0, \infty) \to [0, \infty)$ is a function that is integrable over all compact intervals and $f : X \to \mathbb{C}$ is a Σ -measurable function.

2a

(10 points.) Show that the set $S = \{(x, r) \in X \times [0, \infty) \mid |f(x)| > r\}$ is measurable with respect to the product σ -algebra $\Sigma \otimes \mathcal{B}$.

2b

(10 points.) Define $F(r) := \int_{[0,r]} \phi(s) d\lambda(s)$ for $r \in [0,\infty)$ and set $E_f(r) := \mu(\{x \in X \mid |f(x)| > r\})$. Prove that

$$\int_X (F \circ |f|) d\mu = \int_{[0,\infty)} \phi(r) E_f(r) d\lambda(r)$$

Problem 3

(20 points) Let X be a Banach space, let $f_1, f_2, \ldots, f_m \in X$ and let Y be the subspace of X spanned by f_1, \ldots, f_m . Suppose that $P: X \to Y$ is a linear map so that $x - P(x) \in \ker(P)$ for all $x \in X$ and $\ker(P)$ is a closed subspace of X. Show that P is continuous.

Problem 4

Let X be a locally compact metric space with Borel σ -algebra \mathcal{B}_X . Recall that the topological support of a positive measure μ is defined as

$$\operatorname{supp}(\mu) = \{ x \in X \mid \mu(U) > 0 \text{ for all open } U \text{ with } x \in U \}.$$

4a

(10 points) Let $x \in X$ and consider the Dirac measure δ_x on \mathcal{B}_X . Show that δ_x is a finite regular measure on \mathcal{B}_X with support equal to $\{x\}$. Determine the functional $f \mapsto \int_X f d\delta_x$, where $f \in C_0(X)$.

4b

(10 points) Suppose that a finite regular measure μ on \mathcal{B}_X is such that $\operatorname{supp}(\mu) = \{x\}$. Prove that $\mu = C\delta_x$ for some real constant C > 0.

Problem 5

5a

(10 points) Formulate the Hahn-Banach extension theorem for real vector spaces and for complex vector spaces.

5b

(10 points) Let λ be Lebesgue measure on [0, 1] and let $L^1([0, 1], \lambda)$ be the Banach space of complex-valued integrable functions on [0, 1]. Suppose that $\{f_k\}_{k\geq 1}$ is a sequence of elements in $L^1([0, 1], \lambda)$ and $\{a_k\}_{k\geq 1}$ is a sequence of complex numbers such that there exists M > 0 with the property that

$$\left|\sum_{k=1}^{m} \alpha_k a_k\right| \le M\left(\int_{[0,1]} \left|\sum_{k=1}^{m} \alpha_k f_k(x)\right| d\lambda(x)\right)$$

for any finite sequence of complex numbers $\alpha_1, \ldots, \alpha_m$ and any $m \ge 1$. Show that there is $g \in L^{\infty}([0, 1], \lambda)$ such that

$$\int_{[0,1]} f_k(x)g(x)d\lambda(x) = a_k, \,\forall k \ge 1.$$

END