BONUS EXERCISE

Excercise 1 (Positivity of certain matrices). Let $\mathcal H$ denote a complex Euclidean space.

(1) For $x \in \mathbb{C}$ consider the operator $A \in B(\mathbb{C}^2)$ given by

$$A = \begin{pmatrix} 1 & \overline{x} \\ x & 1 \end{pmatrix}.$$

Show that A is positive if and only if $|x| \leq 1$.

(2) For $X \in B(\mathcal{H})$ consider the operator $B \in B(\mathcal{H} \oplus \mathcal{H})$ given by the matrix

$$B = \begin{pmatrix} \mathbb{1}_{\mathcal{H}} & X^{\dagger} \\ X & \mathbb{1}_{\mathcal{H}} \end{pmatrix}.$$

Show that B is positive if and only if the operator norm $||X|| \leq 1$.

(3) Show that an operator $C \in B(\mathcal{H})$ is positive if and only if the operator

$$\begin{pmatrix} C & C \\ C & C \end{pmatrix} \in B\left(\mathcal{H} \oplus \mathcal{H}\right)$$

is positive.