
FROM CLONING TO CHARACTERIZING SEPARABLE STATES

These notes contain the solutions of Exercise 4 on sheet 12 and an application
of these ideas to the theory of quantum entanglement.

1. Cloning and the measure-prepare map

In the quantitative version of the no-cloning theorem we introduced the opti-
mal cloning map, which we can restrict to the space B(H∨n): Let clonen→m :
B (H∨n)→ B (H∨m) denote the map given by

clonen→m(X) =
d[n]

d[m]
Pmsym

(
X ⊗ 1⊗(m−n)H

)
Pmsym,

where we denote the dimension of the symmetric subspace H∨k by

d[k] :=

(
k + d− 1

k

)
,

with d = dim(H). The map clonen→m is the optimal cloning map from Theorem
?? restricted to the space B(H∨n). It can also be checked that this map coincides
(up to a normalization factor) with the adjoint Tr∗m→n of the partial trace map
Trm→n : B(H∨m) → B(H∨n). We will need another linear map on the symmetric
operators: The measure-prepare map MPm→n : B(H∨m)→ B(H∨n) is given by

MPm→n (X) = d[m]

∫
U(H)

〈φ⊗mU |X|φ⊗mU 〉|φU 〉〈φU |⊗ndη(U),

where |φU 〉 = U |0〉 for any U ∈ U (H). We will need the following lemma:

Lemma 1.1. For any m > n the maps MPm→n : B(H∨m) → B(H∨n) and
clonen→m : B(H∨n)→ B(H∨m) are quantum channels.

Proof. It is clear that these maps are completely positive. To see that they are
trace-preserving we can compute

Tr [MPm→n(X)] = d[m]

∫
U(H)

〈φ⊗mU |X|φ⊗mU 〉dη(U) = Tr
[
PmsymX

]
= Tr [X] ,

for every X ∈ B(H∨m). Similarly, for every Y ∈ B(H∨n) we have

Tr [clonen→m(Y )] =
d[n]

d[m]
Tr
[
Pmsym

(
Y ⊗ 1⊗(m−n)H

)]
= Tr

[
PnsymY

]
= Tr [Y ] ,

as in the proof of the quantitative no-cloning theorem. �

There is a remarkable identity connecting the optimal cloning maps to the
measurement-prepare maps:

Theorem 1.2 (Chiribella identity). For any m > n we have

MPm→n =
d[m]

d[m+ n]

n∑
s=0

d[n]

d[s]

(
m
s

)(
n
s

)(
m+n
n

) clones→n ◦Trm→s .

Proof. From the exercises we know that

B
(
H∨k

)
= spanC{|v〉〈v|⊗k : |v〉 ∈ H},
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and to check equality of two linear maps L1, L2 : B(H∨m)→ B(H∨n) it is therefore
enough to check that

〈|b〉〈b|⊗n, L1

(
|a〉〈a|⊗m

)
〉HS = 〈|b〉〈b|⊗n, L2

(
|a〉〈a|⊗m

)
〉HS ,

for all |a〉, |b〉 ∈ H satisfying 〈a|a〉 = 〈b|b〉 = 1. In our case of interest, we find

〈|b〉〈b|⊗n,MPm→n
(
|a〉〈a|⊗m

)
〉HS = d[m]〈b⊗n ⊗ a⊗m|

∫
U(H)

|φU 〉〈φU |⊗(m+n)dη(U)|b⊗n ⊗ a⊗m〉

=
d[m]

d[m+ n]
〈b⊗n ⊗ a⊗m|Pn+msym |b⊗n ⊗ a⊗m〉

=
d[m]

d[m+ n]

1

(m+ n)!

∑
σ∈Sm+n

〈b⊗n ⊗ a⊗m|Uσ|b⊗n ⊗ a⊗m〉

=
d[m]

d[m+ n]

n∑
s=0

(
m
s

)(
n
s

)(
n+m
n

) |〈a|b〉|2s,
where we used that there are (

m

s

)(
n

s

)
n!m!

possibilities to select s elements from {1, . . . ,m} and s elements from {1, . . . , n}
and match them with s elements out out {1, . . . , n} and {1, . . . ,m}, respectively.
On the other hand, we have

〈b⊗n| clones→n ◦Trm→s
(
|a〉〈a|⊗m

)
|b⊗n〉 =

d[s]

d[n]
|〈a|b〉|2s,

and by comparing the two sides of the Chiribella identity the proof of the theorem
follows.

�

2. The quantum de-Finetti theorem

Why is the Chiribella identity useful? Let us consider the coefficient of the last
term on the right-hand side (i.e., the term for s = n):

d[m]

d[m+ n]

(
m
n

)(
m+n
n

) =
m!(m+ d− 1)!

(m− n)!(m+ n+ d− 1)!
>

(
1− d+ n

d+m

)n
> 1− n(d+ n)

m+ d
.

Since clonen→n = idB(H∨n), we conclude that

MPm→n = (1− εm,n,d) Trm→n +εm,n,dR,

for some quantum channel R : B(H∨m)→ B(H∨n) and some

εm,n,d 6
n(d+ n)

m+ d
.

As a consequence we obtain the following theorem:

Theorem 2.1 (Quantum de-Finetti theorem). For any m > n and any pure quan-
tum state |ψ〉 ∈ H∨m there exists a quantum state

σ ∈ conv{|v〉〈v|⊗n : |v〉 ∈ H, 〈v|v〉 = 1},

such that

‖Trm→n [|ψ〉〈ψ|]− σ‖1 6
2n(d+ n)

m+ d
.
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Proof. By the previous discussion, we have

MPm→n = (1− εm,n,d) Trm→n +εm,n,dR

for some quantum channel R. From this we conclude that

‖Trm→n [|ψ〉〈ψ|]−MPm→n (|ψ〉〈ψ|) ‖1 6 2εm,n,d =
2n(d+ n)

m+ d
.

Setting σ = MPm→n (|ψ〉〈ψ|) this is the statement of the theorem. �

3. Extendibility

We will finish this lecture with an application of these ideas to the computational
task of testing entanglement. The following theorem shows that only separable
states admit arbitrary many (symmetric) extensions:

Theorem 3.1. For complex Euclidean spaces HA and HB let ρAB ∈ D(HA⊗HB)
denote a quantum state such that for every N ∈ N there exists a quantum state
σAB1···BN

∈ D(HA ⊗H⊗NB ) satisfying

σABi = ρAB ,

for every i ∈ {1, . . . , N}. Then, we have ρAB ∈ Sep (HA,HB).

Proof. Note first that without loss of generality we may assume that

(1HA
⊗ Uσ)σAB1···BN

(1HA
⊗ U†σ) = σAB1···BN

,

for every σ ∈ SN and every N ∈ N since otherwise we can consider symmetrizations
of σAB1···BN

instead.
For every N ∈ N, we can now find a purification

|ψAA′B1B′
1···BNB′

N
〉 ∈ HA ⊗HA ⊗ (HB ⊗HB)∨N

of σAB1···BN
. Indeed, we first note that (by an argument from an exercise)

(1HA
⊗ Uσ)

√
σAB1···BN

(1HA
⊗ Uσ)† =

√
σAB1···BN

,

for every σ ∈ SN . Then, the pure state

|ψAA′B1B′
1···BNB′

N
〉 = vec

(√
σAB1···BN

)
,

has the desired properties. Next, we will apply the identity

MPN→1 = (1− εN,1,d2B ) TrN→1 +εN,1,d2BR,

for the measure-prepare channel MPN→1 : B((H⊗2B )∨N ) → B(H⊗2B ) the partial

trace TrN→1 : B((H⊗2B )∨N ) → B(H⊗2B ) and some other quantum channel R. This
identity implies that

‖TrN→1−MPN→1 ‖� 6 2εN,1,d2B .

Therefore, we have that

‖(idAA′⊗TrN→1)
(
ψAA′B1B′

1···BNB′
N

)
−(idAA′⊗MPN→1)

(
ψAA′B1B′

1···BNB′
N

)
‖1 6

2(d2B + 1)

N + d2B
.

Finally, we note that

TrA′B′
[
(idAA′ ⊗ TrN→1)

(
ψAA′B1B′

1···BNB′
N

)]
= ρAB ,

and

TrA′B′
[
(idAA′ ⊗MPN→1)

(
ψAA′B1B′

1···BNB′
N

)]
= d[m]

∫
U(H)

(
1A ⊗ 〈φ⊗NU |

)
ψAB1B′

1···BNB′
N

(
1A ⊗ |φ⊗NU 〉

)
⊗ |φU 〉〈φU |dη(U)

∈ Sep (HA,HB) .
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Since the partial trace over the A′B′ systems is a quantum channel, we have

‖ρAB − TrA′B′
[
(idAA′ ⊗MPN→1)

(
ψAA′B1B′

1···BNB′
N

)]
‖1 6

2(d2B + 1)

N + d2B
.

Since this is true for all N ∈ N we conclude that there is a sequence of separable

quantum states (σsep,NAB )N∈N ∈ D(HA ⊗HB)N such that

‖ρAB − σsep,NAB ‖1 6
2(d2B + 1)

N + d2B
→ 0,

as N → ∞. By compactness of the intersection D(HA ⊗HB) ∩ Sep (HA,HB), we
conclude that ρAB ∈ Sep (HA,HB).

�
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