
Quantum information theory (MAT4430) Spring 2021

Lecture 11: The classical capacity of a quantum channel

Lecturer: Alexander Müller-Hermes

In the last lecture, we discussed Holevo’s theorem quantifying how well classical infor-
mation can be encoded into a quantum system. Holevo’s theorem puts a bound on the
capacity of classical channels obtained from preparing a quantum state x 7→ σx ∈ D(H) for
each x ∈ ΣA followed by a measurement µ : ΣB → B(H)+. The resulting classical channel
N : ΣA → P (ΣB) is given by

N(y|x) = 〈µ(y), σx〉.

To send classical information via a quantum channel T : B(HA)→ B(HB) we could choose
the following strategy motivated by Holevo’s theorem. First, we choose some quantum
states {ρx}x∈ΣA ⊂ D(HA), i.e., we choose a quantum state for every symbol of the classical
input alphabet. Sending these quantum states through the channel T yields the quantum
states σx = T (ρx) ∈ D(HB) on the output system. Finally, we can choose a measurement
µ : ΣB → B(HB)+ on the output quantum system. In this way, we would obtain a classical
channel N{ρx},µ,T : ΣA → P (ΣB) given by

N{ρx},µ,T (y|x) = 〈µ(y), T (ρx)〉,

and we could use this channel to transmit classical information (see Figure 1).

Figure 1: Naive approach to construct a coding scheme.

Optimizing the capacity C(N{ρx},µ,T ) over all choices of {ρx}x∈ΣA ⊂ D(HA) and mea-
surements µ : ΣB → B(H)+ gives a lower bound on the classical capacity of the quantum
channel T (which we will define precisely below). However, this bound could be pretty bad
(spoiler: it is!) since it does not take into account entanglement. We could expect to get
higher communication rates by using a general measurement µ : ΣB → B(H⊗nB )+, i.e., mea-
suring n systems together, instead of measuring each output system separately. Moreover,
we could apply the above idea to the channel T⊗k instead of T thereby allowing entangled
quantum states to be inserted into many instances of the quantum channel. We will see that
such strategies indeed lead to higher communication rates, and in general they can be used
to achieve rates arbitrarily close to the classical capacity C(T ).
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1 Definition of the classical capacity

Let us start with the definition of coding schemes for classical information transmission:

Definition 1.1 (Coding schemes). An (n,m, δ)-coding scheme for classical information
transmission over a quantum channel T : B(HA)→ B(HB) is given by an encoding map

E : {0, 1}m → D(H⊗nA ),

and a measurement
µ : {0, 1}m → B(HB)⊗n,

such that
〈µ(b1, . . . , bm), T⊗n ◦ E(b1, . . . , bm)〉HS > 1− δ,

for all b1, . . . , bm ∈ {0, 1}.

As always, having defined coding schemes leads to the definition of achievable rates and
the classical capacity:

Definition 1.2 (Achievable rates and classical capacity). A rate R > 0 is called achievable
for classical communication over the quantum channel T : B(HA) → B(HB) if either R =
0 or R > 0 and for any n ∈ N there exists an (n,mn, δn)-coding scheme for classical
information transmission over T such that

R = lim
n→∞

mn

n
and lim

n→∞
δn = 0.

We define the classical capacity of the channel T to be

C(T ) = sup{R > 0 achievable rate for classical communication over T}.

The main result of this and the next lecture will be the quantum analogue of Shannon’s
capacity theorem. To state it, we need to define the Holveo information of a quantum
channel:

Definition 1.3 (Holevo information of a quantum channel). For any quantum channel T :
B(HA)→ B(HB) we define

χ (T ) = sup
{p(x),ρx}x∈Σ

χ ({p(x), T (ρx)}x∈Σ) ,

where the supremum is over all ensembles {p(x), ρx}x∈Σ with states in ρx ∈ D(HA) and
p ∈ P(Σ) and any alphabets Σ.

We will show in the exercises that the supremum in the definition of χ (T ) is actually
achieved, and in general we may restrict the optimization in the previous definition to al-
phabets of the size |Σ| 6 d2

A. Now, we can state the main theorem in this lecture:

Theorem 1.4 (Holevo-Schumacher-Westmoreland). For any quantum channel T : B(HA)→
B(HB) we have

C(T ) = lim
k→∞

1

k
χ
(
T⊗k

)
.

We need to make two comments about the previous theorem. First, it should be noted
that unlike in the classical case the capacity C(T ) is not given by a so-called single-letter
formula involving a single copy of the quantum channel T . Instead it is given by a regular-
ization of the Holevo quantity, which involves many copies of T . In general, it is unclear
how to compute such a formula. To this date, it is not known whether there is a simpler
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expression for C(T ), and it is not even known if the capacity C(T ) is a Turing-computable
function.

The second comment is about the converse of the previous theorem. We have seen similar
theorems before, e.g., the compression theorem, where the converse was in the form that the
probability of failure for a protocol goes to 1 if we try to exceed achievable rates. However,
in the HSW-theorem we only claim that the failure probability does not vanish in the limit of
n→∞. This is called a so-called weak converse, where the former is called a strong converse.
To this date it is not known whether the strong-converse holds in the HSW-theorem.

In the next section, we will lay out the mathematical machinery needed for the proof of
the HSW theorem.

2 Conditional typicality

We will need the following notion of conditional typicality :

Definition 2.1. Let pAB ∈ P (ΣA × ΣB) denote a joint probability distribution and pA ∈
P(ΣA) the marginal distribution defined by

pA(x) =
∑
y∈ΣB

pAB(x, y).

For every ε > 0, every n ∈ N and every string (x1, . . . , xn) ∈ Σn
A such that

pA(x1) · · · pA(xn) > 0,

we say that a string (y1, . . . , yn) ∈ Σn
B is ε-typical conditioned on (y1, . . . , yn) if

2−n(H(pAB−H(pA)+ε) <
pAB(x1, y1) · · · p(xn, xn)

pA(x1) · · · pA(xn)
< 2−n(H(pAB−H(pA)−ε).

We denote the set of ε-typical strings conditioned on (x1, . . . , xn) ∈ Σn
A by Tn,ε(pAB|x1, . . . , xn)

and for convenience we set Tn,ε(pAB|x1, . . . , xn) = ∅ if pA(x1) · · · pA(xn) = 0.

The following lemma summarizes some properties of the conditional typical strings:

Lemma 2.2. For any joint probability distribution pAB ∈ P (ΣA × ΣB) we have the follow-
ing:

1. For all ε > 0 we have

lim
n→∞

∑
x1,...,xn∈ΣnA

∑
y1,...,yn∈Tn,ε(pAB |x1,...,xn)

pAB(x1, y1) · · · pAB(xn, yn) = 1.

2. For all n ∈ N and all ε > 0 we have∑
x1,...,xn∈ΣnA

pA(x1) · · · pA(xn)|Tn,ε(pAB|x1, . . . , xn)| < 2n(H(pAB)−H(pA)+ε).

Proof. Exercises.

Next, we need to define the notion of conditional typicality for ensembles of quantum
states. For this consider an ensemble {pA(x), ρx}x∈ΣA and consider the spectral decomposi-
tion

ρx =
∑
y∈ΣB

pB(y|x)|vxy 〉〈vxy |,

where we introduced a conditional probability distribution pB(·|x) ∈ P (ΣB), for ΣB =
{1, . . . ,dim(H)}, for each x ∈ ΣA. We may define a joint probability distribution pAB ∈
P(ΣA × ΣB) by pAB(x, y) = pA(x)pB(y|x) for any x ∈ ΣA and any y ∈ ΣB. With this, we
state the following definition:
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Definition 2.3. Consider an ensemble {pA(x), ρx}x∈ΣA such that

ρx =
∑
y∈ΣB

pB(y|x)|vxy 〉〈vxy |,

for each x ∈ ΣA, and let pAB ∈ P (ΣA × ΣB) for ΣB = {1, . . . ,dim(H)} be defined as above.
For any ε > 0, any n ∈ N and any string x1, . . . , xn ∈ Σn

A we define the projection onto the
ε-typical subspace conditioned on x1, . . . , xn by

Λx1,...,xn,ε =
∑

y1,...,yn
∈Tn,ε(pAB |x1,...,xn)

|vx1
y1
〉〈vx1

y1
| ⊗ · · · ⊗ |vxnyn 〉〈v

xn
yn |.

The next lemma follows immediately from Lemma 2.2:

Lemma 2.4. For any ensemble {pA(x), ρx}x∈ΣA we have the following:

1. For all ε > 0 we have

lim
n→∞

∑
x1,...,xn∈ΣnA

pA(x1) · · · pA(xn)〈Λx1,...,xn,ε, ρx1 ⊗ · · · ⊗ ρxn〉 = 1.

2. For all n ∈ N and all ε > 0 we have∑
x1,...,xn∈ΣnA

pA(x1) · · · pA(xn) Tr [Λx1,...,xn,ε] < 2
n
(∑

x∈ΣA
pA(x)H(ρx)+ε

)
.

3 Achievable rates of product codes

Now, we will show how allowing for global measurements while restricting to product codes
allows for achievable rates arbitrary close to the upper bound given by Holevo’s theorem.
Specifically, we will show the following:

Theorem 3.1 (Performance of product codes). Let Σ denote a finite alphabet, H a complex
Euclidean space and

{σx : x ∈ Σ} ⊂ D(H),

a subset of quantum states. If R < χ ({p(x), σx}x∈Σ) for some p ∈ P(Σ), then for each
n ∈ N there exists a function fn : {0, 1}mn → Σn where mn = bRnc and a POVM µn :
{0, 1}mn → B(H⊗n)+ such that

min
b1,...,bmn∈{0,1}mn

〈µ(b1, . . . , bmn), σf(b1,...,bmn )〉HS → 1,

as n→∞. Here, we write σx1···xn = σx1 ⊗ · · · ⊗ σxn.

Proof. Fix some p ∈ P(Σ) and R < χ ({p(x), σx}x∈Σ). Choose ε > 0 such that

R < χ ({p(x), σx}x∈Σ)− 3ε.

In the following, we will first fix n,m ∈ N and only in the end of the proof will we choose
mn = bRnc. For n,m ∈ N we define the following objects:

• For each x1, . . . , xn ∈ Σn we denote by Λx1,...,xn the projection onto the ε-typical
subspace conditioned on x1, . . . , xn with respect to the ensemble {p(x), σx}x∈Σ.

• We denote by Πn the projection onto the ε-typical subspace of H⊗n with respect to
the average state σ =

∑
x∈Σ p(x)σx.
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• For any function g : {0, 1}m+1 → Σn we define

Q =
∑

b1,...,bm+1∈{0,1}m+1

ΠnΛg(b1,...,bm+1)Πn.

and we define
Qb1,...,bm+1 = Q−

1
2 ΠnΛg(b1,...,bm+1)ΠnQ

− 1
2 .

Note that Qb1,...,bm+1 > 0 and ∑
b1,...,bm+1∈{0,1}m+1

Qb1,...,bm+1 = ΠIm(Q).

• Finally, we define a POVM µ : {0, 1}m+1 → B(H⊗n)+ by

µ(b1, . . . , bm+1) = Qb1,...,bm+1 +
1

2m+1

(
1−ΠIm(Q)

)
,

which also depends on the function g : {0, 1}m+1 → Σn.

We will now analyze the average probability of error when using the coding scheme given by
the function g and the POVM µ from above. This quantity is given by

perr (g) =
1

2m+1

∑
b1,...,bm+1∈{0,1}m+1

〈1− µ(b1, . . . , bm+1), σg(b1,...,bm+1)〉HS .

First, we apply the Hayashi-Nagaoka inequality from the exercises to show that

1−Qb1,...,bm+1 = 1H −Q−
1
2 ΠnΛg(b1,...,bm+1)ΠnQ

− 1
2

6 2
(
1−ΠnΛg(b1,...,bm+1)Πn

)
+ 4

(
Q−ΠnΛg(b1,...,bm+1)Πn

)
,

for each b1, . . . , bm+1 ∈ {0, 1}m+1. This shows that

perr (g) 6
2

2m+1

∑
b1,...,bm+1∈{0,1}m+1

〈1−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS (1)

+
4

2m+1

∑
b1,...,bm+1∈{0,1}m+1

〈Q−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS . (2)

We will now use the probabilistic method to show that for every n ∈ N and with mn = bRnc
there exists a function gn : {0, 1}m+1 → Σn such that perr (gn) → 0 as n → ∞. For this
we select functions g at random as follows: For each b1, . . . , bm+1 we select x1, . . . , xn ∈ Σn

i. i. d. at random according to the distribution p×n, i.e., we select x1, . . . , xn ∈ Σn as the
value of g(b1, . . . , bm+1) with probability p(x1) · · · p(xn). With this random model, we will
estimate the expectation value E [perr (g)], and since the expectation value is linear, we can
analyze the expectation values of the two sums in (1) and (2) separately.

Let us first consider the sum in (1). It is easy to verify the operator identity

ABA = AB +BA−B + (1−A)B(1−A),

for any A,B ∈ B(H). For any fixed x1, . . . , xn ∈ Σn we have

〈ΠnΛx1,...,xnΠn, σx1,...,xn〉HS = 〈ΠnΛx1,...,xn , σx1,...,xn〉HS + 〈Λx1,...,xnΠn, σx1,...,xn〉HS
− 〈Λx1,...,xn , σx1,...,xn〉HS
+ 〈(1−Πn) Λx1,...,xn (1H −Πn) , σx1,...,xn〉HS

> 〈ΠnΛx1,...,xn , σx1,...,xn〉HS + 〈Λx1,...,xnΠn, σx1,...,xn〉HS
− 〈Λx1,...,xn , σx1,...,xn〉HS

= 〈2Πn − 1H,Λx1,...,xnσx1,...,xn〉HS ,
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where we used in the last step that [Λx1,...,xn , σx1,...,xn ] = 0. Now, observe that

〈ΠnΛx1,...,xnΠn, σx1,...,xn〉HS > 〈2Πn − 1,Λx1,...,xnσx1,...,xn〉HS
= 〈2Πn − 1, σx1,...,xn〉HS + 〈1− 2Πn, (1− Λx1,...,xn)σx1,...,xn〉HS
> 〈2Πn − 1, σx1,...,xn〉HS − 〈1− Λx1,...,xn , σx1,...,xn〉HS
= 2〈Πn, σx1,...,xn〉HS + 〈Λx1,...,xn , σx1,...,xn〉HS − 2,

where we used that 1− 2Πn > −1. Applying these estimates to the expectation value of the
term (1) for a randomly chosen function g (as described above) shows that

E

 2

2m+1

∑
b1,...,bm+1∈{0,1}m+1

〈1−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS


=

2

2m+1

∑
b1,...,bm+1∈{0,1}m+1

E
[
〈1−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS

]
= 1−

∑
x1,...,xn∈Σn

p(x1) · · · p(xn)〈ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS

6 3− 2〈Πn, σ
⊗n〉HS −

∑
x1,...,xn∈Σn

p(x1) · · · p(xn)〈Λx1,...,xn , σx1,...,xn〉HS

−→ 0,

as n→∞ by Lemma 2.4 and the properties of the typical projections Πn.
Next, we will analyze the expression in (2). Note that

Q−ΠnΛg(b1,...,bm+1)Πn =
∑

c1,...,cm+1∈{0,1}m+1

c1,...,cm+1 6=b1,...,bm+1

ΠnΛg(c1,...,cm+1)Πn.

Furthermore, we note that by the construction of the random function g (see above) we have

E
[
〈ΠnΛg(c1,...,cm+1)Πn, σg(b1,...,bm+1)〉HS

]
=

∑
x1,...,xn∈Σn

x′1,...,x
′
n∈Σn

p(x1) · · · p(xn)p(x′1) · · · p(x′n)〈Λx1,...,xn ,Πnσx′1,...,x′nΠn〉HS

=
∑

x1,...,xn∈Σn

p(x1) · · · p(xn)〈Λx1,...,xn ,Πnσ
⊗nΠn〉HS ,

for any c1, . . . , cm+1, b1, . . . , bm+1 ∈ {0, 1}. With this, we find that

E
[
〈Q−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS

]
=

∑
c1,...,cm+1∈{0,1}m+1

c1,...,cm+1 6=b1,...,bm+1

E
[
〈ΠnΛg(c1,...,cm+1)Πn, σg(b1,...,bm+1)〉HS

]
= (2m+1 − 1)

∑
x1,...,xn∈Σn

p(x1) · · · p(xn)〈Λx1,...,xn ,Πnσ
⊗nΠn〉HS ,

Recall from an exercise that
Πnσ

⊗nΠn 6 2−n(H(σ)−ε)1,
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and therefore we have

E
[
〈Q−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS

]
6 (2m+1 − 1)2−n(H(σ)−ε)

∑
x1,...,xn∈Σn

p(x1) · · · p(xn) Tr [Λx1,...,xn ]

6 (2m+1 − 1)2−n(H(σ)−ε)2n(
∑
x p(x)H(σx))

6 2m+1−n(χ({p(x),σx})−2ε).

With mn = bRnc such that R < χ ({p(x), σx}x∈Σ)− 3ε we find that

E

 4

2m+1

∑
b1,...,bm+1∈{0,1}m+1

〈Q−ΠnΛg(b1,...,bm+1)Πn, σg(b1,...,bm+1)〉HS


6 2mn−n(χ({p(x),σx})−2ε)+3 −→ 0,

as n→∞.
To finish the proof, we need to combine the previous observations. For every n ∈ N we

denote
δn = E [perr (g)]→ 0,

as n → ∞, by the previous computations. For every n ∈ N, we can now argue as follows:
Since E [perr (g)] = δn, there exists a (non-random) function gn : {0, 1}mn+1 → Σn with
mn = bRnc such that

perr (gn) 6 δn.

Now, we define the set

Bn = {b1, . . . , bmn+1 ∈ {0, 1}mn+1 : 〈1− µ(b1, . . . , bmn+1), σg(b1,...,bmn+1)〉HS > 2δn}.

Since perr (gn) 6 δn, we have that
2δn|Bn|
2mn+1

6 δn,

and we conclude that |Bn| 6 2mn . Therefore, there exists an injective function hn :
{0, 1}mn → {0, 1}mn+1 \ Bn and we can define fn = gn ◦ hn. For this choice, we can
verify that

min
b1,...,bmn∈{0,1}mn

〈µ(hn(b1, . . . , bmn)), σfn(b1,...,bmn )〉HS > 1− 2δn → 1,

as n→∞.
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