
Quantum information theory (MAT4430) Spring 2021

Lecture 13: Additivity problems

Lecturer: Alexander Müller-Hermes

Due to the examples of quantum channels for which the Holevo information is additive, it
was conjecture for some time that it might be always additive. This conjecture was disproved
by Matt Hastings in 2009, and we will review some ideas behind this result in this and the
following lecture.

1 Holevo information and minimum output entropy

Recall the minimum output entropy, which we introduced in the exercises.

Definition 1.1 (Minimal output entropy). For a quantum channel T : B(HA) → B(HB)
we define the minimum output entropy as

Hmin (T ) = min (H(T (ρ)) : ρ ∈ D(HA)) .

By concavity of the von-Neumann entropy it is easy to see that

Hmin (T ) = min (H(T (|ψ〉〈ψ|)) : |ψ〉〈ψ| ∈ Proj(HA)) .

We will now relate the Holevo information to the minimal output entropy. To do so, we will
associate a particular quantum channel T̃ to a given quantum channel T .

Definition 1.2. Let T : B(HA)→ B(HB) denote a quantum channel. For N = dim(HB)2,
we consider a set of unitaries

{Un : n ∈ {1, . . . , N}},

such that

1HB

dim(HB)
Tr =

1

N

N∑
n=1

AdUn .

Then, we define a quantum channel T̃ : B
(
CN ⊗HA

)
→ B(HB) by

T̃ (X) =

N∑
n=1

AdUn ◦T (〈n| ⊗ 1HA
)X (|n〉 ⊗ 1HA

) .

We proved the following theorem in the exercises:

Theorem 1.3. For any quantum channel T : B(HA)→ B(HB) we have

χ
(
T̃
)

= log (dim(HB))−Hmin (T ) .

The relevance of the previous theorem becomes clear by the following corollary:

Corollary 1.4. If there exist quantum channels T : B(HA) → B(HB) and S : B(HC) →
B(HD) such that

Hmin (T ⊗ S) < Hmin (T ) +Hmin (S) ,

then we have
χ
(
T̃ ⊗ S̃

)
> χ

(
T̃
)

+ χ
(
S̃
)
.
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Proof. Let N = dim(HB)2 and M = dim(HD)2 and assume that

Hmin (T ⊗ S) < Hmin (T ) +Hmin (S) .

Consider two sets of unitaries

{Un : n ∈ {1, . . . , N2}} and {Vm : m ∈ {1, . . . ,M2}}

such that

1HB

dim(HB)
Tr =

1

N

N∑
n=1

AdUn .

and

1HD

dim(HD)
Tr =

1

M

M∑
m=1

AdVm .

Clearly, we have
1HB⊗HD

dim(HB) dim(HD)
Tr =

1

NM

∑
n,m

AdUn ⊗AdVm ,

and therefore, we have
˜T ⊗ S = T̃ ⊗ S̃,

for the choice of unitaries from above. Applying Theorem 1.3 (twice) leads to

χ
(
T̃ ⊗ S̃

)
= log(dim(HB)) + log(dim(HD))−Hmin (T ⊗ S)

> log(dim(HB))−Hmin (T ) + log(dim(HD))−Hmin (S)

= χ (T ) + χ (S) .

This finishes the proof.

The previous corollary shows that a counterexample to the additivity of the minimum
output entropy implies a counterexample to the additivity conjecture of the Holevo quantity.
The next corollary shows that it is enough to find two distinct quantum channels for which
the minimum output entropy is not additive, since they give rise to a single quantum channel
violating the additivity alone.

Corollary 1.5. If there are quantum channels S1, S2 : B(HA)→ B(HB) such that

Hmin (S1 ⊗ S2) < Hmin (S1) +Hmin (S2) ,

then there exists a quantum channel T : B(HA)→ B(HB) such that

Hmin (T ⊗ T ) < 2Hmin (T ) .

Proof. Consider ρ1, ρ2 ∈ D(HA) such that

Hmin (S1) = H (S1(ρ1)) , and Hmin (S2) = H (S2(ρ2)) .

Next, we define quantum channels T1, T2 : B(HA)→ B(HB)⊗2 by

T1(X) = S1(X)⊗ S2(ρ2), and T2(X) = S1(ρ1)⊗ S2(X),

and note that
Hmin (T1) = Hmin (T2) = Hmin (S1) +Hmin (S2) .
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Moreover, we have

Hmin (T1 ⊗ T2) = Hmin (S1 ⊗ S2) +Hmin (S1) +Hmin (S2)

< 2Hmin (S1) + 2Hmin (S2) =

Finally, we consider the direct sum

T = T1 ⊕ T2 : B
(
C

2 ⊗HA
)
→ B

(
C

2 ⊗H⊗2B
)

defined by

T (X) = T1 ((〈1| ⊗ 1HA
)X (|1〉 ⊗ 1HA

))⊗ |1〉〈1|+ T2 ((〈2| ⊗ 1HA
)X (|2〉 ⊗ 1HA

))⊗ |2〉〈2|.

Given a quantum state σ ∈ D
(
C2 ⊗HA

)
we have

T (σ) = p1T1(σ1)⊗ |1〉〈1|+ p2T2(σ2)⊗ |2〉〈2|,

where

p1 = Tr [(〈1| ⊗ 1HA
)σ (|1〉 ⊗ 1HA

)]

p2 = Tr [(〈2| ⊗ 1HA
)σ (|2〉 ⊗ 1HA

)]

and

σ1 =
(〈1| ⊗ 1HA

)σ (|1〉 ⊗ 1HA
)

p1
∈ D(HA)

σ2 =
(〈2| ⊗ 1HA

)σ (|2〉 ⊗ 1HA
)

p2
∈ D(HA).

We conclude that

H (T (σ)) = H(p) + p1H(T1(σ1)) + p2H(T2(σ2)),

such that
Hmin (T ) = Hmin (T1) = Hmin (T2) .

Finally, note that for any τ ∈ D(H) (with a particular reordering of tensor factors) we have

H ((T ⊗ T ) (|1〉〈1| ⊗ |2〉〈2| ⊗ τ)) = |1〉〈1| ⊗ |2〉〈2| ⊗ (T1 ⊗ T2)(τ).

Therefore, we have

Hmin (T ⊗ T ) ≤ Hmin (T1 ⊗ T2) < Hmin(T1) +Hmin(T2) = 2Hmin(T ).

2 A family of additivity problems

We will need a few constructions that are best understood when applied in a concrete setting.
Here, we will consider a related additivity problem involving so-called Renyi entropies based
on Schatten p-norms. For p > 2 this problem can be solved without the heavy machinery
that is needed for the additivity problem of the minimum output entropy.
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2.1 Minimal output Renyi entropies

Before studying the additivity problem for the minimal output entropy, we will look at a
slightly easier problem. For any p > 1, we may define the p-Renyi entropy as

Hp(ρ) =
p

1− p
log (‖ρ‖p) ,

for any quantum state ρ ∈ D(H). The following lemma shows that these quantities are
closely related to the von-Neumann entropy:

Lemma 2.1. We have
lim
p↘1

Hp(ρ) = H(ρ),

for any quantum state ρ ∈ D(H).

Proof. Note that

Hp(ρ) =
1

1− p
log
(
‖ρ‖pp

)
,

and

‖ρ‖pp =
d∑
i=1

λpi ,

where λi denote the eigenvalues of ρ. Using l’Hospital’s rule we find

lim
p↘1

Hp(ρ) =
1

ln(2)
lim
p↘1
−

d∑
i=1

ln(λi)λ
p
i = H(ρ).

Similar to the minimum output entropy, we may define the minimum output Renyi-
entropies of a quantum channel T : B(HA)→ B(HB) as

H(min)
p (T ) = min

ρ∈D(HA)
Hp (T (ρ)) .

By monotonicity of the logarithm and since p > 1, we can write

H(min)
p (T ) =

p

1− p
log

(
max

ρ∈D(HA)
‖T (ρ) ‖p

)
,

which motivates the definition of the maximum output p-norm given by

‖T‖1→p = max
‖X‖1=1

‖T (X)‖p.

Note that here we optimize over the full ‖ · ‖1-unit ball, but actually the optimization can
be restricted to selfadjoint operators, and then to pure quantum states (i.e., the selfadjoint
extreme points of the ‖ · ‖1-unit ball up to a phase factor), showing that

H(min)
p (T ) =

p

1− p
log (‖T‖1→p) , (1)

for any quantum channel T : B(HA) → B(HB). We state the following lemma without
proof.

Lemma 2.2. For any quantum channel T : B(HA)→ B(HB) we have

‖T‖1→p = max
X∈B(HA)sa,‖X‖1=1

‖T (X)‖p = max
|ψ〉∈HA,〈ψ|ψ〉=1

‖T (|ψ〉〈ψ|)‖p.
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By (1), we see that the following statements are equivalent:

1. (Additivity of H
(min)
p )

H(min)
p (T ⊗ S) = H(min)

p (T ) +H(min)
p (S) .

2. (Multiplicativity of ‖ · ‖1→p)

‖T ⊗ S‖1→p = ‖T‖1→p‖S‖1→p.

Moreover, if H
(min)
p would be additive for all values of p close to 1, then additivity of the

minimal output entropy would follow by Lemma 2.1. Historically, this was a strong motiva-
tion for studying multiplicativity of the norms ‖ · ‖1→p, and we will review a few key results
below.

2.2 Quantum channels and subspaces of tensor products

Consider a subspace S ⊆ CdB ⊗ CdE and an isometry V : CdA → CdB ⊗ CdE with dA =
dim(S) and Im (V ) = S. We can define a quantum channel T : B(CdA) → B(CdB ) by the
Stinespring dilation

T (X) = TrE

[
V XV †

]
.

In this way, we obtain a correspondence between quantum channels and subspaces of CdB ⊗
CdE . We will now use this correspondence to study the additivity problem for maximum
output p-norms. We start with a lemma:

Lemma 2.3. Consider an isometry V : CdA → CdB ⊗CdE with Im (V ) = S ⊆ CdB ⊗CdE .
The quantum channel T : B(CdA)→ B(CdB ) given by

T (X) = TrE

[
V XV †

]
,

satisfies

‖T‖1→p = max
|ψ〉∈S,〈ψ|ψ〉=1

‖TrE (|ψ〉〈ψ|) ‖p = max
X∈B(CdE ,CdB ),‖X‖2=1,

vec(X)∈S

‖X‖22p.

Proof. By Lemma 2.2, we have

‖T‖1→p = max
|φ〉∈HA,〈φ|φ〉=1

‖TrE

[
V |ψ〉〈ψ|V †

]
‖p.

Since |ψ〉 = V |φ〉 ∈ S and since any vector |ψ〉 ∈ S can be obtained in this way from some
|φ〉 ∈ HA, we conclude that

‖T‖1→p = max
|ψ〉∈S,〈ψ|ψ〉=1

‖TrE (|ψ〉〈ψ|) ‖p

For the second equality we recall that

TrE [|ψ〉〈ψ|] = XX†,

whenever vec(X) = |ψ〉. Since the operator-vector correspondence is an isometric isomor-
phism and ‖XX†‖p = ‖X‖22p for any X ∈ B(HE ,HB) we conclude that the second equality
holds.
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2.3 Conjugate pairs and non-multiplicativity for p > 2

Definition 2.4 (Conjugate pairs of quantum channels). Consider a quantum channel T :
B(CdA)→ B(CdB ) with Stinespring dilation

T (X) = TrE

[
V XV †

]
,

where V : CdA → CdB ⊗ CdE is an isometry. We define the conjugate quantum channel1

T : B(CdA)→ B(CdB ) by

T (X) = TrE

[
V XV

†
]
,

where V denotes the entrywise conjugation of V in the computational basis.

Note that the definition of the conjugate quantum channel depends on the Stinespring
dilation, which in general is not unique. The results, which we will prove below will be valid
for any conjugate quantum channel and we will usually specify the Stinespring dilation used
to define it.

Lemma 2.5 (Spectral property). Let T : B(CdA) → B(CdB ) denote a quantum channel
with Stinespring dilation

T (X) = TrE

[
V XV †

]
,

where V : CdA → CdB ⊗CdE is an isometry. For any p ≥ 1 we have

‖
(
T ⊗ T

)
(ωA′A) ‖p ≥ ‖

(
T ⊗ T

)
(ωA′A) ‖∞ ≥

dA
dBdE

,

for the conjugate quantum channel T : B(CdA) → B(CdB ), where ωA′A ∈ D(CdA ⊗ CdA)
denotes the maximally entangled state given by ωA′A = |ΩA′A〉〈ΩA′A| with

|ΩA′A〉 =
1√
dA

dA∑
i=1

|iA〉 ⊗ |iA〉 ∈ HA ⊗HA.

Proof. Consider the maximally entangled states

|ΩB′B〉 =
1√
dB

dB∑
i=1

|iB〉 ⊗ |iB〉 ∈ HB ⊗HB,

|ΩE′E〉 =
1√
dE

dE∑
i=1

|iE〉 ⊗ |iE〉 ∈ HE ⊗HE .

Since 1E′E ≥ |ΩE′E〉〈ΩE′E |, we have (with some ordering of tensor factors)

‖
(
T ⊗ T

)
(ωdA) ‖∞ ≥ 〈ΩB′B|

(
T ⊗ T

)
(ωA′A) |ΩB′B〉

= Tr
[
(|ΩB′B〉〈ΩB′B| ⊗ 1E′E)

(
AdV ⊗AdV

)
(ωA′A)

]
≥ Tr

[
(|ΩB′B〉〈ΩB′B| ⊗ |ΩE′E〉〈ΩE′E |)

(
AdV ⊗AdV

)
(ωA′A)

]
=
∣∣∣ (〈ΩB′B| ⊗ 〈ΩE′E |)

(
V ⊗ V

)
|ΩA′A〉

∣∣∣2
=

1

dEdAdB

∣∣∣Tr
[
V †V

] ∣∣∣2 =
1

dEdAdB

∣∣∣Tr [1
C

dA ]
∣∣∣2 =

dA
dEdB

,

where we used the necklace identity.

1This should not be confused with the complementary channel, which is sometimes referred to as the
“conjugate channel” as well.
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The previous lemma can be used to show that the quantities T 7→ ‖T‖1→p are not
multiplicative. For this we will need the following lemma, which we will not prove2:

Lemma 2.6. Any X ∈ B(Cd) satisfying XT = −X has even rank, and its non-zero singular
values come in pairs, i.e., we have

σ1 = s1(X) = s2(X) ≥ σ2 = s3(X) = s4(X) ≥ · · · ≥ σr/2 = sr−1(X) = sr(X) > 0.

With this, we can prove:

Theorem 2.7. For any p > 2 there exists a complex Euclidean space H and quantum
channels T : B(H)→ B(H) and S : B(H)→ B(H) such that

‖T ⊗ S‖1→p > ‖T‖1→p‖S‖1→p.

Proof. Fix some p > 2. Consider the antisymmetric subspace

Ad = {|ψ〉 ∈ Cd ⊗Cd : F|ψ〉 = −|ψ〉},

where F ∈ B(Cd ⊗ Cd) is the flip operator, defined by F (|i〉 ⊗ |j〉) = |j〉 ⊗ |i〉 for all i, j.
Clearly, we have dim(Ad) = d(d− 1)/2. Using the operator-vector correspondence it is easy
to see that

Ad = {vec (X) : X ∈ B(Cd), XT = −X}.

By Lemma 2.6, we have

‖X‖22 = 2‖(σ1, . . . , σr/2)‖22 ≥ 2
1− 2

p ‖X‖2p.

By Lemma 2.3 we conclude that

‖T‖1→p = max
X∈B(Cd),‖X‖2=1,

XT=−X

‖X‖22p ≤ 2
1
p
−1
,

for the quantum channel T : B
(
Cd(d−1)/2

)
→ B

(
Cd
)

associated to Ad as explained in the
beginning of Section 2.2. Using Lemma 2.5 and the ordering of the Schatten p-norms we
have

‖T ⊗ T‖1→p ≥ ‖T ⊗ T‖1→∞ ≥
1

2

(
1− 1

d

)
>

1

2
· 2

2
p
−1 ≥ ‖T‖1→p‖T‖1→p,

whenever the dimension d is large enough.

2For a proof see Corollary 4.4.19. in “Matrix analysis” by Roger Horn and Charles R. Johnston
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