
Quantum information theory (MAT4430) Spring 2021

Lecture 14: The symmetric subspace and Schur-Weyl duality

Lecturer: Alexander Müller-Hermes

In the previous lecture, we have constructed the Haar measure on the unitary group.
This measure can be used to symmetrize quantum states and quantum channels in various
ways. Here, we will give an introduction to some of these symmetries and how they give
rise to two families of quantum states known as Werner states (after Reinhard Werner, who
first introduced them) and isotropic quantum states. These families have nice properties and
they play a central role in the manipulation of quantum information.

1 Permutations of tensor factors

Recall the symmetric group SN consisting of permutations of N elements, i.e., bijections
σ : {1, . . . , N} → {1, . . . , N}. Let H denote a complex Euclidean space. The group SN
acts naturally on the tensor product H⊗N by the (unitary) representation SN 3 σ 7→ Uσ ∈
U
(
H⊗N

)
defined as

Uσ (|v1〉 ⊗ · · · ⊗ |vN 〉) = |vσ−1(1)〉 ⊗ · · · ⊗ |vσ−1(N)〉,

and extended linearily. The following properties can be verified easily:

• For any σ1, σ2 ∈ SN we have Uσ1Uσ2 = Uσ1◦σ2 .

• For any σ ∈ SN we have U−1σ = Uσ−1 = U †σ = UTσ , where the transpose is in the
computational basis.

1.1 The symmetric subspace

Throughout this section let H denote a complex Euclidean space. We will need the following
subspace of H⊗N :

Definition 1.1 (Symmetric subspace). For any N ∈ N, we define

H∨N = {|ψ〉 ∈ H⊗N : Uσ|ψ〉 = |ψ〉 for all σ ∈ SN}.

In the following, we will prove some elementary properties of the symmetric subspace that
will become useful later. For this, let PNsym ∈ Proj

(
H⊗N

)
denote the orthogonal projection

onto H∨N , which we will also call the symmetric projection. The next lemma is an easy
exercise:

Lemma 1.2. For any N ∈ N we have

PNsym =
1

N !

∑
σ∈SN

Uσ.

Proof. It is easy to check that
(
PNsym

)†
= PNsym since U †σ = Uσ−1 and SN is a group. We

can also check that Uσ ◦ PNsym = PNsym ◦ Uσ = PNsym for any σ ∈ SN , which implies that(
PNsym

)2
= PNsym and that Im

(
PNsym

)
⊆ H∨N . In conclusion, PNsym is an orthogonal projection

and clearly we have Im
(
PNsym

)
= H∨N .
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Next, we will find an orthonormal basis for H∨N . For this let d = dim (H) and let
{|1〉, . . . , |d〉} ⊂ H denote the computational basis. Consider the function τ : {1, . . . , d}N →
{0, 1, . . . , N}d mapping each string s ∈ {1, . . . , d}N of length N to its type given by

τ(s) = (#{i : si = 1},#{i : si = 2}, . . . ,#{i : si = d}) .

For each N, d ∈ N, we define the set

Td,N = {t ∈ {0, 1, . . . , N}d : t1 + · · ·+ td = N},

of all possible types a string s ∈ {1, . . . , d}N could have, and we denote by τ−1(t) ⊂
{1, . . . , d}N the set of all strings compatible with the type t ∈ Td,N . The following lemma is
an exercise in combinatorics:

Lemma 1.3. For any d,N ∈ N we have

|Td,N | =
(
d+N − 1

N

)
,

and

|τ−1 (t) | =
(
N

t

)
:=

N !

t1!t2! · · · td!
,

for any t ∈ {0, 1, . . . , N}d.

Proof. The proof of the second statement is easy. To prove the first statement we can use
the stars-and-bars graphical notation (see Figure 1)

Figure 1: Proof by stars and bars.
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Now, we can find two ways of representing the symmetric subspace:

Theorem 1.4. Let H denote a complex Euclidean space of dimension d ∈ N and let N ∈ N.
For any t ∈ Td,N we define a vector

|b(t)〉 =
1√(
N
t

) ∑
s∈τ−1(t)

|s1〉 ⊗ · · · ⊗ |sN 〉.

Then, {|b(t)〉 : t ∈ Td,N} is an orthonormal basis of H∨N . Moreover, we have

dim(H∨N ) =

(
d+N − 1

N

)
.

Proof. Since the type of a string s is invariant under exchanging its order, it is easy to see
that |b(t)〉 ∈ H∨N for any t ∈ Td,N . On the other hand, we clearly have

PNsym (|s1〉 ⊗ · · · ⊗ |sN 〉) = |b(t)〉,

whenever τ(s) = t. Therefore, we conclude that

H∨N = Im
(
PNsym

)
⊆ span{|b(t)〉 : t ∈ Td,N} ⊆ H∨N .

This finishes the proof.

The basis {|b(t)〉 : t ∈ Td,N} can be seen as the standard basis of the symmetric subspace
H∨N , but there is another spanning set that is equality important:

Theorem 1.5. Let H denote a complex Euclidean space of dimension d ∈ N and let N ∈ N.
We have

H∨N = span{|v〉⊗N : |v〉 ∈ H}.

Moreover, for any set S ⊂ C satisfying |S| ≥ N + 1 we have

H∨N = span{|v〉⊗N : |v〉 ∈ H such that vi ∈ S for every i}.

To prove this theorem, we need the following fact:

Theorem 1.6 (Vandermonde matrix). For distinct numbers x1, . . . , xN ∈ C the Vander-
monde matrix

V (x1, . . . , xN ) =


1 1 1 · · · 1
x1 x2 x3 · · · xN
x21 x22 x23 · · · x2N
...

...
...

. . .
...

xN−11 xN−12 xN−13 · · · xN−1N


is invertible. In particular, for every n ∈ {0, . . . , N−1} there exist numbers α

(n)
1 , α

(n)
2 , . . . , α

(n)
N ∈

C such that
N∑
i=1

α
(n)
i xki = δnk.

Proof. The determinant of V (x1, . . . , xN ) can be computed inductively as

det (V (x1, . . . , xN )) =
∏
i<j

(xj − xi),

which is non-zero if and only if the numbers x1, . . . , xN+1 ∈ C are distinct.
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Proof of Theorem 1.5. Again, it is easy to see that |v〉⊗N ∈ H∨N for any |v〉 ∈ H. For the
rest of the proof, we fix a subset S ⊆ C such that |S| ≥ N + 1. It remains to show that

H∨N ⊆ span{|v〉⊗N : |v〉 ∈ H such that vi ∈ S for every i}.

For y1, . . . , yd ∈ S we define

|p(y1, . . . , yd)〉 :=

(
d∑
l=1

yl|l〉

)⊗N
∈ span{|v〉⊗N : |v〉 ∈ H such that vi ∈ S for every i},

which can be expanded to

|p(y1, . . . , yd)〉 =
∑

s∈Td,N

√(
N

s

)
ys11 · · · y

sd
d |b(s)〉.

Now, let x1, . . . , xN+1 ∈ S denote distinct elements. By Lemma 1.6 there are numbers

α
(n)
1 , α

(n)
2 , . . . , α

(n)
N+1 ∈ C for each n ∈ {0, . . . , N} such that

N+1∑
i=1

α
(n)
i xki = δnk,

for any k ∈ {0, . . . , N}. Then, we can check that√(
N

t

)
|b(t)〉 =

N+1∑
i1,...,id=1

α
(t1)
i1
· · ·α(td)

id
|p(xi1 , . . . , xid〉

∈ span{|v〉⊗N : |v〉 ∈ H such that vi ∈ S for every i},

by linearity of the span.

1.2 The subspace of symmetric operators

In this section, we will discuss the symmetric subspace of the Hilbert-Schmidt inner product
space B(H⊗N ) ' B(H)⊗N , which is a special case of the construction from the previous
section. The following lemma is left as an exercise:

Lemma 1.7 (Symmetric operators). Let H denote a complex Euclidean space, N ∈ N and
X ∈ B(H⊗N ). Then, the following are equivalent:

1. We have X ∈ B(H)∨N .

2. For any σ ∈ SN we have UσXU
†
σ = X.

3. We have X ∈ span{Y ⊗N : Y ∈ B(H)}.

The third point in the previous lemma is just the representation of the symmetric sub-
space as the span of tensor powers. However, in the case of symmetric operators we have a
strengthening of this fact:

Theorem 1.8. For any complex Euclidean space H and any N ∈ N we have

B(H)∨N = span{U⊗N : U ∈ U (H)}.
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Proof. By Theorem 1.5, for every |w〉 ∈ H we have

|w〉⊗N =
∑
i

λi|vi〉⊗N ,

for some λi ∈ C and some |vi〉 ∈ H satisfying |(vi)j | = 1. We conclude that

D⊗N =
∑
i

λiU
⊗N
i ,

where D ∈ B(H) is the operator containing the entries of |w〉 on its diagonal (in the com-
putational basis) and Ui is the unitary diagonal operator containing the entries of |vi〉 on
its diagonal (again in the computational basis). This shows that any diagonal operator
D ∈ B(H) satisfies

D⊗N ∈ span{U⊗N : U ∈ U (H)}.

Consider now an arbitrary operator Y ∈ B(H), which can be written as

Y = V DW,

for a diagonal operator D ∈ B(H) and unitary operators V,W ∈ U (H). By the previous
observation, we conclude that

Y ⊗N = V ⊗ND⊗NW⊗N ∈ span{U⊗N : U ∈ U (H)}.

Since this holds for any operator Y ∈ B(H) we conclude by Lemma 1.7 that

B(H)∨N = span{Y ⊗N : Y ∈ B(H)} ⊆ span{U⊗N : U ∈ U (H)}.

The other inclusion is trivial.

The previous theorem has an important consequence: The symmetric subspace H∨N is
an irreducible representation of U

(
Cd
)
3 U 7→ U⊗N . Since we want to keep the presentation

selfcontained we will state this result in elementary terms:

Corollary 1.9. Any subspace S ⊆ H∨N satisfying U⊗N (S) ⊆ S for any U ∈ U (H), i.e.,
any invariant subspace, satisfies either S = {0} or S = H∨N .

Proof. By Theorem 1.8 any invariant subspace S ⊆ H∨N satisfies X(S) ⊆ S for any X ∈
B(H)∨N = span{U⊗N : U ∈ U (H)}. If |ψ〉 ∈ S is non-zero, we could consider the operator
X = |φ〉〈ψ| ∈ B(H)∨N for any |φ〉 ∈ H∨N . Invariance of S then implies that |φ〉 ∈ S as well,
and we conclude that S = H∨N since the choice of |φ〉 was arbitrary.

An important consequence of this corollary is the following theorem giving a useful rep-
resentation of the symmetric projection:

Theorem 1.10. For any Euclidean space H and any N ∈ N we have

PNsym

Tr
[
PNsym

] =

∫
U(H)

(
U |φ〉〈φ|U †

)⊗N
dη(U),

for any pure quantum state |φ〉 ∈ H.

Note that we could use Schur’s lemma to prove this theorem. To keep the discussion
selfcontained, we will now cast the general (and short) proof of Schur’s lemma into the
setting at hand.
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Proof. For some pure quantum state |φ〉 ∈ H, we set

X =

∫
U(H)

(
U |φ〉〈φ|U †

)⊗N
dη(U) ∈ B (H)∨N .

We observe that X is selfadjoint, and that X|ψ〉 = 0 whenever |ψ〉 ∈ (H∨N )⊥. Now, consider
an eigenvalue λ ∈ R \ {0} and note that

S = {|ψ〉 ∈ H∨N :
(
X − λPNsym

)
|ψ〉 = 0} 6= {0}.

Using that
[
X,U⊗N

]
= 0 for any U ∈ U (H) we find that(
X − λPNsym

)
U⊗N |ψ〉 = U⊗N

(
X − λPNsym

)
|ψ〉 = 0,

and hence we have U⊗N (S) ⊆ S for any U ∈ U (H). By Theorem 1.9 we conclude that
S = H∨N (note that S contains at least one non-zero vector by definition) and hence that

X|ψ〉 = λ|ψ〉,

for any |ψ〉 ∈ H∨N . We conclude that X = λPNsym and, since Tr [X] = 1, the proof is finished.

2 Interplay between different symmetries

2.1 The double commutant theorem

We will need the following lemma:

Lemma 2.1. Let H denote a complex Euclidean space and V ⊆ H a subspace. For any
operator X ∈ B(H) the following are equivalent:

1. We have XV ⊆ V and X†V ⊆ V.

2. We have [X,ΠV ] = 0, where ΠV denotes the orthogonal projection onto V.

Proof. The second statement implies that

X|v〉 = XΠV |v〉 = ΠVX|v〉 ∈ V,

for any |v〉 ∈ V. By taking adjoints, the same holds for the operator X† instead. We conclude
that the first statement follows from the second.

Assume now that the first statement holds, and note that we have

ΠVX|v〉 = X|v〉 = XΠV |v〉,

for any |v〉 ∈ V. Now, consider |w〉 ∈ V⊥ and note that

〈v|X|w〉 = 〈X†v||w〉 = 0,

for any |v〉 ∈ V, which implies that X|w〉 ∈ V⊥. Any |u〉 ∈ H can then be written as
|u〉 = |v〉+ |w〉 with |v〉 ∈ V and |w〉 ∈ V⊥, and we have

XΠV |u〉 = XΠV |v〉 = ΠVX|v〉 = ΠVX(|v〉+ |w〉) = ΠVX|u〉.

We conclude that [X,ΠV ] = 0, which is the second statement.
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Theorem 2.2 (The double commutant theorem light). Let H denote a complex Euclidean
space and A ⊆ B(H) a †-closed subalgebra containing 1H. Then, we have

A′′ = A,

where S ′ denotes the commutant of an algebra S, i.e., the set of operators commuting with
all operators in S.

Proof. It is clear that
A ⊆ A′′,

and we only have to show the other inclusion. Consider the subspace

V = {vecX : X ∈ A} ⊆ H⊗H,

obtained by vectorizing the operators in A. Since A is a †-closed algebra we can use the
necklace identity to show that

(1H ⊗X)V ⊆ V, and (1H ⊗X†)V ⊆ V,

for any X ∈ A. By Lemma 2.1 we conclude that

[1H ⊗X,ΠV ] = 0,

for any X ∈ A. This implies that ΠV ∈ B′ for

B = {1H ⊗X : X ∈ A}.

Consider now some Y ∈ A′′. We will show that 1H ⊗ Y ∈ B′′ implying that

[1H ⊗ Y,ΠV ] = 0,

and by Lemma 2.1 that (1H ⊗ Y )V ⊆ V. Since A contains 1H we conclude that

(1H ⊗ Y ) vec(1H) = vec(Y ) ∈ V,

and hence that Y ∈ A finishing the proof.
It remains to show that 1H ⊗ Y ∈ B′′ whenever Y ∈ A′′. This is not difficult: Any

operator Z ∈ B(H⊗H) can be written as

Z =
∑
i,j

|i〉〈j| ⊗ Zij ,

with Zij ∈ B(H) for all i, j. If Z ∈ B′, then it is easy to see that Zij ∈ A′ for any i, j, and
that [Z,1H ⊗ Y ] = 0 for any Y ∈ A′′. The proof is finished.

2.2 Schur-Weyl duality light

Theorem 2.3. Let H denote a complex Euclidean space and let N ∈ N. For X ∈ B
(
H⊗N

)
,

the following are equivalent:

1. We have
[
X,Y ⊗N

]
= 0 for any Y ∈ B(H).

2. We have
[
X,U⊗N

]
= 0 for any U ∈ U(H).

3. We have
X ∈ span{Uσ : σ ∈ SN}.
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Proof. Both the first and the second statements are equivalent to

X ∈
(
B (H)∨N

)′
.

We will now show that (
B (H)∨N

)′
= span{Uσ : σ ∈ SN},

which finishes the proof. First, we note that

A = span{Uσ : σ ∈ SN},

is a †-closed algebra containing 1H = Uid. Then, we observe that X ∈ B(H⊗N ) is contained
in B (H)∨N if and only if [X,Uσ] = 0 for every σ ∈ SN . This shows that

B (H)∨N = A′.

By taking commutators on both sides of this equation and using the double commutant
theorem we conclude that

A =
(
B (H)∨N

)′
,

which finishes the proof.
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