
Quantum information theory (MAT4430) Spring 2021

Lecture 16: Werner states, twirling and the no-cloning theorem

Lecturer: Alexander Müller-Hermes

Last lecture, we have studied the actions of the permutation group and the unitary group
on the space H⊗N . In this lecture, we will see two applications of these ideas. We will first
study a class of symmetric quantum states, which palys an important role in entanglement
theory, and second, we will prove the so-called no-cloning theorem showing that it is impos-
sible to copy quantum information.

1 Werner states

We will now apply the ideas of this lecture to define a family of symmetric quantum states.

Definition 1.1 (Werner states). A quantum state ρ ∈ D
(
Cd ⊗Cd

)
is called a Werner state

if (U ⊗ U)ρ = ρ(U ⊗ U) for every U ∈ U
(
Cd
)
.

What makes Werner states so nice, is that general quantum states can be mapped to
this family by a natural symmetrization operation, which is called a twirl. This twirling
operation can be even be performed in practice, and it is the first step of many protocols
in quantum information theory to symmetrize the input in this way. Let us start with the
following general statement about symmetrizing operations:

Theorem 1.2 (Twirling). The UU -twirl TUU : B(Cd ⊗Cd)→ B(Cd ⊗Cd) given by

TUU (X) =

∫
U(Cd)

(U ⊗ U)X (U ⊗ U)† dη(U),

is a selfadjoint quantum channel and we have

TUU (X) = 〈Psym, X〉HS
Psym

Tr [Psym]
+ 〈Pasym, X〉HS

Pasym

Tr (Pasym)
,

where

Psym =
1

2
(1d ⊗ 1d +Fd) and Pasym =

1

2
(1d ⊗ 1d −Fd) ,

denote the projections onto the symmetric and the antisymmetric subspace of Cd ⊗ Cd,
respectively. Furthermore, note that

Tr [Psym] =
1

2
d (d+ 1) and Tr [Pasym] =

1

2
d (d− 1) ,

are the dimensions of these spaces.

Proof. Consider an operator X ∈ B(Cd ⊗Cd) and note that

(V ⊗ V )TUU (X) (V ⊗ V )† = TUU (X) ,

for every V ∈ U
(
Cd
)

by unitary invariance of the Haar measure. Clearly, this equation
shows that [V ⊗ V, TUU (X)] = 0 for each V ∈ U

(
Cd
)

and by Theorem ?? we have

TUU (X) = a
Psym

Tr [Psym]
+ b

Pasym

Tr [Pasym]
,
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since
span{1d ⊗ 1d,Fd} = span{Psym, Pasym}.

Moreover, note that
(U ⊗ U)Psym(U ⊗ U)† = Psym,

and
(U ⊗ U)Pasym(U ⊗ U)† = Pasym,

such that
a = 〈Psym, TUU (X)〉HS = 〈TUU (Psym) , X〉HS = 〈Psym, X〉HS ,

and
b = 〈Pasym, TUU (X)〉HS = 〈TUU (Pasym) , X〉HS = 〈Pasym, X〉HS .

This proves the formula for TUU stated in the theorem. From this formula it is clear that
TUU is a selfadjoint quantum channel since the projectors Psym and Pasym are positive
semidefinite.

Note that the Werner states are invariant under twirling, i.e., we have

TUU (ρ) = ρ,

for any Werner state ρ ∈ D(Cd ⊗Cd). Since any quantum state ρ satisfies

1 = Tr [ρ] = 〈Psym, ρ〉HS + 〈Pasym, ρ〉HS ,

and
〈Psym, ρ〉HS ≥ 0 and 〈Pasym, ρ〉HS ≥ 0,

we have the the following corollary:

Corollary 1.3. The Werner states on Cd ⊗Cd are given by

ρW (t) = (1− t) Psym

Tr [Psym]
+ t

Pasym

Tr (Pasym)
,

with t ∈ [0, 1]. For any quantum state σ ∈ D(Cd ⊗Cd) we have

TUU (σ) = ρW (t),

for t = 〈Pasym, σ〉HS.

Finally, we will demonstrate how useful the symmetry of the Werner states is, by deter-
mining the parameter region in which they are entangled.

Theorem 1.4. The following are equivalent:

1. The Werner state ρW (t) is separable.

2. The Werner state ρW (t) has positive partial transpose.

3. We have t ≤ 1/2.

Proof. Clearly, the first statement implies the second, and by direct computation it can be
verified that the second statement implies the third. To see how the third statement implies
the first, we will exploit the twirling operation. We start by noting that

〈Psym, |φ〉〈φ| ⊗ |φ⊥〉〈φ⊥|〉HS =
1

2
= 〈Pasym, |φ〉〈φ| ⊗ |φ⊥〉〈φ⊥|〉HS ,
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for any pair of orthogonal pure states |φ〉, |φ⊥〉 ∈ Cd. We can also check that

〈Psym, |φ〉〈φ| ⊗ |φ〉〈φ|〉HS = 1,

and
〈Pasym, |φ〉〈φ| ⊗ |φ〉〈φ|〉HS = 0.

Using the formula of the UU -twirl we find that

ρW (t) = TUU

(
|φ〉〈φ| ⊗

(
2t|φ〉〈φ|+ (1− 2t)|φ⊥〉〈φ⊥|

))
,

whenever 0 ≤ t ≤ 1
2 . But for any such t we then have

ρW (t) =

∫
u∈U(Cd)

U |φ〉〈φ|U †⊗
(

2tU |φ〉〈φ|U † + (1− 2t)U |φ⊥〉〈φ⊥|U †
)
dη(U) ∈ Sep

(
C

d,Cd
)
,

and the proof is finished.

2 Impossibility of cloning and applications

2.1 The qualitative no-cloning theorem

The term “no-cloning theorem” is commonly used for the fact that unknown quantum states
cannot be cloned or copied. The most common argument derives a contradiction from
assuming a closed system with state space H undergoing some process modelled by a unitary
U ∈ U (H) satisfying

U (|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉, (1)

for all pure states |ψ〉 ∈ H. Indeed such a unitary cannot exist, since otherwise

|〈ψ|φ〉|2 = (〈ψ| ⊗ 〈0|)U †U (|φ〉 ⊗ |0〉) = |〈ψ|φ〉|,

for any pair of pure states |ψ〉, |φ〉 ∈ H. However, this equation can only be satisfied if
|〈ψ|φ〉| = 0 or |〈ψ|φ〉| = 1 leading to a contradiction since there are pure states satisfying
neither. Note that this argument actually implies a stronger statement: No unitary U ∈
U (H) can satisfy (1) for distinct, non-orthogonal pure states |ψ1〉, |ψ2〉 ∈ H. The assumption
of non-orthogonality is crucial here and there are unitaries, e.g., the controlled-not gate,
satisfying (1) for certain orthogonal pure states.

The previous argument might not seem fully general, since there could exist more general
schemes for copying quantum information. The most general such operation would be some
quantum channel T : B(H)→ B(H⊗H) satisfying(

Tr⊗idB(H)

)
◦ T =

(
idB(H) ⊗ Tr

)
◦ T = idB(H). (2)

To show that such an operation does not exist, we recall that any quantum state ρAB ∈
D (H⊗H) satisfying ρA = |ψ〉〈ψ| and ρB = |ψ〉〈ψ| for some pure state |ψ〉 ∈ H is necessarily
of the form ρAB = |ψ〉〈ψ| ⊗ |ψ〉〈ψ|. Therefore, (2) implies that

T (|ψ〉〈ψ|) = |ψ〉〈ψ| ⊗ |ψ〉〈ψ|,

for every pure state |ψ〉〈ψ| ∈ Proj (H). We will now show that this property contradicts
linearity of T . Write some pure state |ψ〉〈ψ| ∈ Proj (H) as

|ψ〉〈ψ| =
dim(H)2∑

i=1

λi|ψi〉〈ψi|,
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for {λi}i ⊂ R and using a set of pure states {|ψi〉〈ψi|}i which are linearily independent in
B (H). Then, we note that

T (|ψ〉〈ψ|) = |ψ〉〈ψ| ⊗ |ψ〉〈ψ| =
∑
i,j

λiλj |ψi〉〈ψi| ⊗ |ψj〉〈ψj |

6=
dim(H)2∑

i=1

λi|ψi〉〈ψi| ⊗ |ψi〉〈ψi| =
dim(H)2∑

i=1

λiT (|ψi〉〈ψi|) .

We conclude that no quantum channel can satisfy (2) for every pure state |ψ〉〈ψ| ∈ Proj (H)
as quantum channels are always linear.

2.2 The quantitative no-cloning theorem

The previous argument shows that there is no quantum process that “clones” arbitrary pure
states, i.e., implementing the map |φ〉 7→ |φ〉 ⊗ |φ〉. What about the map |φ〉⊗n 7→ |φ〉⊗m for
m > n? We will now show that it is also impossible to find a quantum channel performing
this task. Moreover, we will quantify how well a quantum channel can approximately succeed
in it.

Theorem 2.1 (The quantitative no-cloning theorem). For any positive and trace-preserving
linear map T : B(H⊗n)→ B(H⊗m) we have

inf
|v〉∈H
〈v|v〉=1

F (T (|v〉〈v|⊗n), |v〉〈v|⊗m) ≤ d[n]

d[m]
,

where

d[k] =

(
k + d− 1

k

)
,

is the dimension of the symmetric subspace H∨k, where d = dim(H). Moreover, there exists
a quantum channel T attaining this bound.

Proof. Using that T (|v〉〈v|⊗n) ≤ T (Pn
sym) by positivity, we can estimate

inf
|v〉∈H

〈T (|v〉〈v|⊗n), |v〉〈v|⊗m〉HS ≤ inf
|v〉∈H

〈T (Pn
sym), |v〉〈v|⊗m〉HS

≤
∫
U(H)
〈T (Pn

sym),
(
U |0〉〈0|U †

)⊗m
〉HSdη(U).

By a result from the previous lecture we have

Pm
sym

Tr
[
Pm
sym

] =

∫
U(H)

(
U |0〉〈0|U †

)⊗m
dη(U),

and we obtain

inf
|v〉∈H

〈T (|v〉〈v|⊗n), |v〉〈v|⊗m〉HS ≤ 〈T (Pn
sym),

Pm
sym

Tr
[
Pm
sym

]〉HS ≤
Tr
[
T (Pn

sym)
]

Tr
[
Pm
sym

] =
d[n]

d[m]
.

To attain this bound, we consider the quantum channel T : B(H⊗n)→ B(H⊗m) given by

T (X) =
d[n]

d[m]
Pm
sym

(
X ⊗ 1⊗(m−n)H

)
Pm
sym + 〈1⊗nH − P

n
sym, X〉HSσ,

where σ ∈ D (H⊗m) is arbitrary. Note that T is a quantum channel since

Tr
[
Pm
sym

(
X ⊗ 1⊗(m−n)H

)
Pm
sym

]
= Tr

[
Pm
sym

(
X ⊗ 1⊗(m−n)H

)]
=
d[m]

d[n]
Tr
[
Pn
symX

]
,
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where we used that(
idH ⊗ Tr⊗(m−n)

) (
Pm
sym

)
= d[m]

∫
U(H)

(U |0〉〈0|U †)⊗ndη(U) =
d[m]

d[n]
Pn
sym.

Finally, we note that for any pure state |v〉 ∈ H we have

〈T (|v〉〈v|⊗n), |v〉〈v|⊗m〉HS =
d[n]

d[m]
Tr
[(
|v〉〈v|⊗n ⊗ 1⊗(m−n)H

)
Pm
sym|v〉〈v|⊗mPm

sym

]
=

d[n]

d[m]
,

since Pm
sym|v〉〈v|⊗mPm

sym = |v〉〈v|⊗m.

For N = 2, the quantitative version of the no-cloning theorem shows that

inf
|v〉∈H
〈v|v〉=1

F (T (|v〉〈v|), |v〉〈v|⊗2) ≤ 2

d+ 1
,

for any quantum channel1 T : B(H) → B(H ⊗ H). Hence, there are pure states |v〉〈v| ∈
Proj (H) whose image under T is far away from the product |v〉〈v| ⊗ |v〉〈v| in fidelity. If you
look careful at the proof of the previous theorem, you can observe that a slightly stronger
statement holds: Even the average fidelity between the quantum states T (|v〉〈v|) and the
pure states |v〉〈v|⊗2 when averaging over pure states is low (provided that d is large). From
either result we conclude that it is impossible to exactly copy every pure state using a fixed
quantum channel. Remarkably, the theorem also identifies an optimal cloning channel, which
comes as close as possible to a copying device.

3 The Chiribella identity and quantum de-Finetti theorem

There is even more to say about the structure of the symmetric subspace and the no-cloning
problem. In the final part of this lecture, we will discuss a few additional observations which
will lead to the quantum de-Finetti theorem. To prove this result, we will need to consider
a subspace of symmetric operators:

3.1 Bose-symmetric operators

We start with a definition:

Definition 3.1 (Bose-symmetric operators). We will call operators in B
(
H∨N

)
Bose-symmetric.

Sometimes, we will tacitly view the Bose-symmetric operators as a subspace of B(H)∨N .

Examples of Bose-symmetric operators include PN
sym and operators of the form |v〉〈w|⊗N

for |v〉, |w〉 ∈ H. Note that B
(
H∨N

)
( B(H)∨N since we have, for example, that

1⊗NH ∈ B(H)∨N \B
(
H∨N

)
.

The following lemma is left as an exercise:

Lemma 3.2. For any complex Euclidean space H we have

B
(
H∨N

)
= spanC{|v〉〈v|⊗N : |v〉 ∈ H},

and
B
(
H∨N

)
sa

= spanR{|v〉〈v|⊗N : |v〉 ∈ H}.

Proof. Exercise.
1 and even unphysical positive trace-preserving maps
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3.2 Cloning and the measure-prepare map

In the quantitative version of the no-cloning theorem we introduced the optimal cloning map,
which we can restrict to the space B(H∨n): Let clonen→m : B (H∨n)→ B (H∨m) denote the
map given by

clonen→m(X) =
d[n]

d[m]
Pm
sym

(
X ⊗ 1⊗(m−n)H

)
Pm
sym,

where we denote the dimension of the symmetric subspace H∨k by

d[k] :=

(
k + d− 1

k

)
,

with d = dim(H). The map clonen→m is the optimal cloning map from Theorem 2.1 restricted
to the space B(H∨n). It can also be checked that this map coincides (up to a normalization
factor) with the adjoint Tr∗m→n of the partial trace map Trm→n : B(H∨m) → B(H∨n).
We will need another linear map on the symmetric operators: The measure-prepare map
MPm→n : B(H∨m)→ B(H∨n) is given by

MPm→n (X) = d[m]

∫
U(H)
〈φ⊗mU |X|φ

⊗m
U 〉|φU 〉〈φU |

⊗ndη(U),

where |φU 〉 = U |0〉 for any U ∈ U (H). We will need the following lemma:

Lemma 3.3. For any m ≥ n the maps MPm→n : B(H∨m) → B(H∨n) and clonen→m :
B(H∨n)→ B(H∨m) are quantum channels.

Proof. It is clear that these maps are completely positive. To see that they are trace-
preserving we can compute

Tr [MPm→n(X)] = d[m]

∫
U(H)
〈φ⊗mU |X|φ

⊗m
U 〉dη(U) = Tr

[
Pm
symX

]
= Tr [X] ,

for every X ∈ B(H∨m). Similarly, for every Y ∈ B(H∨n) we have

Tr [clonen→m(Y )] =
d[n]

d[m]
Tr
[
Pm
sym

(
Y ⊗ 1⊗(m−n)H

)]
= Tr

[
Pn
symY

]
= Tr [Y ] ,

as in the proof of Theorem 2.1.

There is a remarkable identity connecting the optimal cloning maps to the measurement-
prepare maps:

Theorem 3.4 (Chiribella identity). For any m ≥ n we have

MPm→n =
d[m]

d[m+ n]

n∑
s=0

d[n]

d[s]

(
m
s

)(
n
s

)(
m+n
s

) clones→n ◦Trm→s .

Proof. Exercises.

Why is the Chiribella identity useful? Let us consider the coefficient of the last term on
the right-hand side (i.e., the term for s = n):

d[m]

d[m+ n]

(
m
n

)(
m+n
n

) =
m!(m+ d− 1)!

(m− n)!(m+ n+ d− 1)!
≥
(

1− d+ n

d+m

)n

≥ 1− n(d+ n)

m+ d
.

Since clonen→n = idB(H∨n), we conclude that

MPm→n = (1− εm,n,d) Trm→n +εm,n,dR,
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for some quantum channel R : B(H∨m)→ B(H∨n) and some

εm,n,d ≤
n(d+ n)

m+ d
.

As a consequence we obtain the following theorem:

Theorem 3.5 (Quantum de-Finetti theorem). For any m ≥ n and any pure quantum state
|ψ〉 ∈ H∨m there exists a quantum state

σ ∈ conv{|v〉〈v|⊗n : |v〉 ∈ H, 〈v|v〉 = 1},

such that

‖Trm→n [|ψ〉〈ψ|]− σ‖1 ≤
n(d+ n)

m+ d
.
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