
Quantum information theory (MAT4430) Spring 2021

Lecture 18: The decoupling method and the LSD theorem

Lecturer: Alexander Müller-Hermes

In this lecture, we will prove the decoupling theorem and use it to obtain coding schemes
for entanglement generation over a quantum channel T .

1 The coherent information and the LSD theorem

We will start with a definition:

Definition 1.1 (Coherent information). For a quantum channel T : B(HA)→ B(HB) and
a quantum state σ ∈ D(HA) we define the coherent information of σ through T as

Ic (σ;T ) = H (T (σ))−H
((

idB(HA) ⊗ T
) (

vec
(√
σ
)

vec
(√
σ
)†))

,

and the maximum coherent information of T as

Ic(T ) = max
σ∈D(HA)

Ic (σ;T ) .

Recall that quantum channels T : B(HA) → B(HB) and S : B(HA) → B(HE) for
complex Euclidean spaces HA,HB and HE are complementary if there exists an isometry
V : HA → HB ⊗HE such that

T (X) = TrE

[
V XV †

]
and S(X) = TrB

[
V XV †

]
.

We will sometimes denote by T c a (standard) complementary channel obtained from a Stine-
spring dilation. The following lemma gives a useful alternative form of the coherent infor-
mation in terms of complementary channels:

Lemma 1.2. For any quantum channel T : B(HA) → B(HB) and any quantum state
σ ∈ D(HA) we have

Ic (σ;T ) = H(T (σ))−H(S(σ)),

for any quantum channel S : B(HA)→ B(HE) complementary to T .

Proof. Consider an isometry V : HA → HB ⊗HE such that

T (X) = TrE

[
V XV †

]
and S(X) = TrB

[
V XV †

]
,

and define the vector

|vABE〉 = (1A ⊗ V ) vec
(√
σ
)
∈ HA ⊗HB ⊗HE .

Note that

H
((

idB(HA) ⊗ T
) (

vec
(√
σ
)

vec
(√
σ
)†))

= H (TrE [|vABE〉〈vABE |])

= H (TrAB [|vABE〉〈vABE |]) = H(S(σ)),

where we used that |vABE〉 is a pure state and that reduced density operators of the same
pure state have the same spectra. The statement of the lemma follows by inserting the
previous equation into the definition of Ic(σ;T ).
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The previous lemma allows a neat physical interpretation of the coherent information
of σ through the quantum channel T : The coherent information quantifies how much more
information about the input state at A arrives at the receiver B compared to the environment
system E. Intuitively, it makes sense that this should be related to the task of quantum
communication since sending a pure state with low error means that the environment system
E can only be very weakly correlated with the receiving system B and hence has almost no
information about the state that was send. We will see in the next sections, that this intuition
can be used to prove the following capacity theorem:

Theorem 1.3 (Lloyd, Shor, Devetak). For any quantum channel T : B(HA)→ B(HB) we
have

Q(T ) = lim
k→∞

1

k
Ic

(
T⊗k

)
.

We will spend the rest of this lecture proving this result.

2 The decoupling approach

To prove the capacity theorem, we can focus on the task of entanglement generation for
which the achievable rates coincide with the achievable communication rates for quantum
information (see previous lecture). To find efficient entanglement generation schemes we will
apply the so-called decoupling approach. The main idea behind this strategy is that a decoder
generating entanglement for some given pure input |φRA〉 ∈ HR ⊗HA state can be directly
obtained from Uhlmann’s theorem. The final error of this entanglement generation scheme is
given by the distance of the RE marginal of the joined quantum state, obtained from sending
the A system of |φRA〉 through the Stinespring isometry of the quantum channel under
consideration, from a product state. Intuitively, this says that if after the application of the
quantum channel the reference system R and the environment system E are approximately
decoupled, then we can approximately generate entanglement between R and the output
system B of the channel (see Figure ....). The next theorem makes this intuition precise:

Theorem 2.1 (Decoupling implies code). Consider a quantum channel T : B(HA) →
B(HB) with Stinespring isometry V : HA → HE ⊗HB and a pure state |φRA〉 ∈ HR ⊗HA
for some complex Euclidean space HR. For the pure state

|ψREB〉 = (1R ⊗ V )|φRA〉 ∈ HR ⊗HE ⊗HB

we assume that

‖TrB
[
|ψREB〉〈ψREB|

]
− 1R

dim(HR)
⊗ τE‖1 ≤ ε,

for some τE ∈ D(HE). Then, there exists a quantum channel D : B(HB) → B(HR)
satisfying

F (ωR, (idR ⊗D ◦ T )
(
|φRA〉〈φRA|

)
≥ 1− 1

2
ε.

Proof. Exercises.

The decoupling theorem concerns the following situation:
To find coding schemes to share entanglement (and hence to communicate quantum

information) we will need the following theorem:

Theorem 2.2 (The decoupling theorem). Consider complex Euclidean spaces HA and HE,
and a (not necessarily normalized) vector |φAEB〉 ∈ HA ⊗HE ⊗HB. Furthermore, consider
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a projection P : HA → HA such that HR = Im (P ) ⊂ HA and define the (unnormalized)
vectors

|ψREBU 〉 =

√
dim(HA)

dim(HR)
(PU ⊗ 1E ⊗ 1B) |φAEB〉,

for each unitary U ∈ U (HA). Then, we have∫
U(HA)

∥∥∥TrB
[
|ψREBU 〉〈ψREBU |

]
− P

dim(HR)
⊗ τE

∥∥∥
1
dη(U) ≤

√
dim(HR) dim(HE) Tr

[
(τAE)2

]
,

where we used the reduced operators

τE = TrAB
[
|φAEB〉〈φAEB|

]
and

τAE = TrB
[
|φAEB〉〈φAEB|

]
.

We will need a few properties of Haar-integrals:

• By a result from an earlier lecture, we have∫
U(H)

UXU †dη(U) = Tr [X]
1H

dim(H)
.

• We also need the formula for the UU -twirling channel TUU : B(H⊗H) → B(H⊗H)
given by

TUU (X) =

∫
U(H)

(U ⊗ U)X(U ⊗ U)†dη(U)

= 〈Psym, X〉HS
Psym

Tr [Psym]
+ 〈Pasym, X〉HS

Pasym
Tr [Pasym]

,

for

Psym =
1

2
(1H ⊗ 1H +F) and Pasym =

1

2
(1H ⊗ 1H −F) .

We can now prove the decoupling theorem:

Proof. Note first that∫
U(HA)

|ψREBU 〉〈ψREBU |dη(U)

=
dim(HA)

dim(HR)

∫
U(HA)

(PU ⊗ 1E ⊗ 1B) |φAEB〉〈φAEB|
(
U †P ⊗ 1E ⊗ 1B

)
dη(U)

=
P

dim(HR)
⊗ τEB,

where
τEB = TrA

[
|φAEB〉〈φAEB|

]
.
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As a consequence, we find that∫
U(HA)

∥∥∥TrB
[
|ψREBU 〉〈ψREBU |

]
− P

dim(HR)
⊗ τE

∥∥∥2
2
dη(U)

=

∫
U(HA)

〈TrB
[
|ψREBU 〉〈ψREBU |

]
,TrB

[
|ψREBU 〉〈ψREBU |

]
〉

− 〈 P

dim(HR)
⊗ τE ,TrB

[
|ψREBU 〉〈ψREBU |

]
〉

− 〈TrB
[
|ψREBU 〉〈ψREBU |

]
,

P

dim(HR)
⊗ τE〉

+ 〈 P

dim(HR)
⊗ τE , P

dim(HR)
⊗ τE〉dη(U)

=

∫
U(HA)

Tr
[
TrB

[
|ψREBU 〉〈ψREBU |

]2]
dη(U)− 1

dim(HR)
Tr
[(
τE
)2]

.

Let us focus on the first term in the last line. Note that

Tr
[(
ρAE

)2]
= Tr

[
(FA ⊗FE)(ρAE ⊗ ρAE)

]
,

where FA ∈ U (HA ⊗HA) and FE ∈ U (HE ⊗HE) are flip operators exchanging the two A
or E systems, respectively. Using that

TrB
[
|ψREBU 〉〈ψREBU |

]
=

dim(HA)

dim(HR)
(PU ⊗ 1E)τAE(U †P ⊗ 1E),

we find that∫
U(HA)

Tr
[
TrB

[
|ψREBU 〉〈ψREBU |

]2]
dη(U)

=

∫
U(HA)

Tr
[
(FA ⊗FE)

(
TrB

[
|ψREBU 〉〈ψREBU |

]
⊗ TrB

[
|ψREBU 〉〈ψREBU |

])]
dη(U)

=
dim(HA)2

dim(HR)2

∫
U(HA)

Tr
[(((

U †P ⊗ U †P
)
FA (PU ⊗ PU)

)
⊗FE

) (
τAE ⊗ τAE

)]
dη(U)

=
dim(HA)2

dim(HR)2
Tr
[
(TUU (FR)⊗FE)

(
τAE ⊗ τAE

)]
,

where we used the UU -twirling channel TUU from a previous lecture, and introduced the
operator

FR = (P ⊗ P )FA(P ⊗ P ).

It is easy to compute that

〈Psym,FR〉HS =
1

2
(Tr [FR] + Tr [P ⊗ P ]) =

1

2
dim(HR) (dim(HR) + 1) =: cs,

and

〈Pasym,FR〉HS =
1

2
(Tr [FR]− Tr [P ⊗ P ]) =

1

2
dim(HR) (1− dim(HR)) =: ca.

Using the formula for the UU -twirl from a previous lecture, we find that

TUU (FR) = cs
Psym

Tr [Psym]
+ ca

Pasym
Tr [Pasym]

=
1

2

(
cs

Tr [Psym]
+

ca
Tr [Pasym]

)
1A ⊗ 1A +

1

2

(
cs

Tr [Psym]
− ca

Tr [Pasym]

)
FA.
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An easy (but tedious) computation reveals that

1

2

(
cs

Tr [Psym]
+

ca
Tr [Pasym]

)
=

dim(HA)

dim(HR)

(
dim(HA)− dim(HR)

dim(HA)2 − 1

)
≤ 1

dim(HR)
,

and
1

2

(
cs

Tr [Psym]
− ca

Tr [Pasym]

)
=

dim(HA)

dim(HR)

(
dim(HR) dim(HA)− 1

dim(HA)2 − 1

)
≤ 1.

Combining the previous equations shows that

dim(HA)2

dim(HR)2
Tr
[
(TUU (FR)⊗FE)

(
τAE ⊗ τAE

)]
≤ Tr

[
(FA ⊗FE)

(
τAE ⊗ τAE

)]
+

1

dim(HR)
Tr
[
(1A ⊗ 1A ⊗FE)

(
τAE ⊗ τAE

)]
= Tr

[(
τAE

)2]
+

1

dim(HR)
Tr
[(
τE
)2]

,

and combining this with the computation from before we have∫
U(HA)

Tr
[
TrB

[
|ψREBU 〉〈ψREBU |

]2]
dη(U) ≤ Tr

[(
τAE

)2]
.

Finally, we can use the equivalence between the ‖ ·‖2-norm and the ‖ ·‖1-norm together with
the fact that the square root is concave to obtain∫

U(HA)

∥∥∥TrB
[
|ψREBU 〉〈ψREBU |

]
− P

dim(HR)
⊗ τE

∥∥∥
1
dη(U)

≤
∫
U(HA)

√
dim(HR) dim(HE)

∥∥∥TrB
[
|ψREBU 〉〈ψREBU |

]
− P

dim(HR)
⊗ τE

∥∥∥2
2
dη(U)

≤
√

dim(HR) dim(HE)

∫
U(HA)

∥∥∥TrB
[
|ψREBU 〉〈ψREBU |

]
− P

dim(HR)
⊗ τE

∥∥∥2
2
dη(U)

≤
√

dim(HR) dim(HE) Tr
[
(τAE)2

]
,

and the proof is finished.

3 Some technical lemmas

To prove that rates close to the coherent information are achievable for quantum commu-
nication over a quantum channel, we will need some technical lemmas. The first lemma
summarizes some properties of typical projections of pure states:

Lemma 3.1. For complex Euclidean spaces HA,HB and HE let |ψ〉 ∈ HA ⊗ HB ⊗ HE be
some pure state and set

ρA = TrBE [|ψ〉〈ψ|]
ρB = TrAE [|ψ〉〈ψ|]
ρE = TrAB [|ψ〉〈ψ|] .

Moreover, let Πn,δ
A ∈ Proj

(
H⊗nA

)
, Πn,δ

B ∈ Proj
(
H⊗nB

)
and Πn,δ

E ∈ Proj
(
H⊗nE

)
denote pro-

jections onto the δ-typical subspaces with respect to the marginal states ρ⊗nA , ρ⊗nB and ρ⊗nE ,
respectively, and define the (unnormalized) vector

|ψnδ 〉 = (Πn,δ
A ⊗Πn,δ

B ⊗Πn,δ
E )|ψ〉⊗n ∈ H⊗nA ⊗H⊗nB ⊗H⊗nE

Then, the following statements hold:
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1. We have
‖|ψ〉〈ψ| − |ψnδ 〉〈ψnδ |‖1 → 0,

as n→∞.

2. We have
Tr
[
Πn,δ
E

]
≤ 2nH(ρE)+nδ.

3. We have
Tr
[
(TrAnEn [|ψnδ 〉〈ψnδ |])

2
]
≤ 2−nH(ρB)+nδ

The proof of this lemma will use the operator-inequality

21HA ⊗ 1HB ⊗ 1HC + ΠA ⊗ΠB ⊗ΠC

≥ ΠA ⊗ 1HB ⊗ 1HC + 1HA ⊗ΠB ⊗ 1HC + 1HA ⊗ 1HB ⊗ΠC , (1)

which holds for any triple of projections ΠA ∈ Proj (HA), ΠB ∈ Proj (HB) and ΠC ∈
Proj (HC). To prove it, note that both sides of the inequality commute and it is therefore
enough to check the inequality on an orthonormal basis of joined eigenvectors. Such a basis
is easily constructed from eigenbases of the individual projection operators.

Proof of Lemma 3.1. By (1) we have

〈ψ⊗n|(Πn,δ
A ⊗Πn,δ

B ⊗Πn,δ
E )|ψ⊗n〉 ≥ Tr

[
Πn,δ
A ρ⊗nA

]
+ Tr

[
Πn,δ
B ρ⊗nB

]
+ Tr

[
Πn,δ
E ρ⊗nE

]
− 2

−→ 1 as n→∞.

Then, we can use an identity from exercise sheet 6 to compute

‖|ψ〉〈ψ|⊗n − |ψnδ 〉〈ψnδ |‖1 = ‖|ψ〉〈ψ|⊗n − cn
|ψnδ 〉〈ψnδ |

cn
‖1

=
√

(1 + cn)2 − 4c2n → 0,

as n→∞, and where we used

cn = 〈ψnδ |ψnδ 〉 = 〈ψ⊗n|(Πn,δ
A ⊗Πn,δ

B ⊗Πn,δ
E )|ψ⊗n〉.

The second statement is a basic property of the typical projection, which we showed previ-
ously. For the third statement note that

TrAnEn [|ψnδ 〉〈ψnδ |] ≤ Πn,δ
B ρ⊗nB Πn,δ

B ≤ 2−nH(ρB)+nδΠn,δ
B . (2)

Here, the first inequality in (2) follows from the fact that

Tr [XB TrA [(ΠA ⊗ 1B)YAB(ΠA ⊗ 1B)]] = Tr [(ΠA ⊗XB)YAB] ≤ Tr [(1A ⊗XB)YAB] = Tr [XBYB] ,

for any projection ΠA ∈ Pro(HA), any XB ∈ B(HB)+ and any YAB ∈ B(HA ⊗ HB)+.
Showing that

TrA [(ΠA ⊗ 1B)YAB(ΠA ⊗ 1B)] ≤ YB.
The last inequality in (2) follows from a bound in lecture 9. Using again basis properties of
typical projections, we find that

Tr
[
(TrAnEn [|ψnδ 〉〈ψnδ |])

2
]
≤ (2−nH(ρB)+nδ)2 Tr

[
Πn,δ
B

]
≤ 2−nH(ρB)+nδ,

since for operators X,Y ∈ B(H) we have

Tr
[
(X + Y )2

]
= Tr

[
X2
]

+ 2 Tr
[
Y 1/2XY 1/2

]
+ Tr

[
Y 2
]
≥ Tr

[
X2
]
,

whenever Y ≥ 0.
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The next lemma is a simple fact about the trace distance between quantum states:

Lemma 3.2. For every pair of quantum states ρ, σ ∈ D(H) and any c ∈ R, we have

‖ρ− σ‖1 ≤ 2‖cρ− σ‖1.

Proof. We have

‖ρ− σ‖1 ≤ ‖ρ− cρ‖1 + ‖cρ− σ‖1 = |1− c|+ ‖cρ− σ‖1.

The statement of the lemma follows by realizing that

|1− c| = |Tr [cρ− σ] | ≤ ‖cρ− σ‖1.

Finally, we need an estimate of a certain Haar-integral, which we will prove in the exer-
cises:

Lemma 3.3. Consider a selfadjoint operator H ∈ B(HA ⊗ HB)sa and a projection P :
HA → HA with Im (P ) ⊆ HC ⊂ HA. Then, we have

dim(HC)

Tr [P ]

∫
U(HC)

‖(PU ⊗ 1HB )H(U †P ⊗ 1HB )‖1dη(U) ≤ ‖H‖1.

Proof. Assume for each U ∈ U (HC) that YU ∈ B(HA ⊗HB) satisfies ‖YU‖∞ = 1 and

‖(PU ⊗ 1HB )H(U †P ⊗ 1HB )‖1 = Tr
[
Y †U (PU ⊗ 1HB )H(U †P ⊗ 1HB )

]
.

Note that ‖YU‖∞ = 1 implies that −1HA ⊗ 1HB ≤ YU ≤ 1HA ⊗ 1HB implying that

−(U †PU ⊗ 1HB ) ≤ (U †P ⊗ 1HB )Y †U (PU ⊗ 1HB ) ≤ (U †PU ⊗ 1HB ),

for each U ∈ U (HC). By integrating these inequalities we find that

−(1HA ⊗ 1HB ) ≤ dim(HC)

Tr [P ]

∫
U(HC)

(U †P ⊗ 1HB )Y †U (PU ⊗ 1HB )dη(U) ≤ (1HA ⊗ 1HB ).

This shows that

‖dim(HC)

Tr [P ]

∫
U(HC)

(U †P ⊗ 1HB )Y †U (PU ⊗ 1HB )dη(U)‖∞ ≤ 1,

and that

dim(HC)

Tr [P ]

∫
U(HC)

‖(PU ⊗ 1HB )H(U †P ⊗ 1HB )‖1dη(U)

=
dim(HC)

Tr [P ]
Tr

[∫
U(HC)

(U †P ⊗ 1HB )Y †U (PU ⊗ 1HB )dη(U) ·H

]
≤ ‖H‖1.
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4 Achieving rates close to the coherent information

Now, we can proceed with the main theorem in this lecture:

Theorem 4.1. Let T : B(HA) → B(HB) denote a quantum channel and σ ∈ D(HA) a
quantum state. Then, any rate

0 ≤ R < Ic (σ;T ) ,

is achievable for entanglement generation over the quantum channel T .

Proof. Throughout the proof, we will fix a δ > 0, and we will show that any rate

0 ≤ R < Ic (σ;T )− 3δ,

is achievable for entanglement generation over the quantum channel T . Let V : HA →
HE⊗HB denote a Stinespring isometry of T and let |φAA′〉 ∈ HA⊗HA denote the purification
of σ ∈ D(HA) given by

|φAA′〉 = vec
(√
σ
)
.

Next, consider the reduced quantum states

τA = TrEB

[
(1A ⊗ V ) |φAA′〉〈φAA′ |

(
1A ⊗ V †

)]
= TrA′

[
|φAA′〉〈φAA′ |

]
τE = TrAB

[
(1A ⊗ V ) |φAA′〉〈φAA′ |

(
1A ⊗ V †

)]
= T c(σ)

τB = TrAE

[
(1A ⊗ V ) |φAA′〉〈φAA′ |

(
1A ⊗ V †

)]
= T (σ),

of the pure quantum state
|τAEB〉 = (1A ⊗ V )|φAA′〉.

For brevity, let us set

|τn〉 =
(
|τAEB〉

)⊗n ∈ H⊗nA ⊗H⊗nE ⊗H⊗nB .

For every n ∈ N we consider the projections Πn,δ
A ∈ Proj

(
H⊗nA

)
, Πn,δ

B ∈ Proj
(
H⊗nB

)
and

Πn,δ
E ∈ Proj

(
H⊗nE

)
onto the δ-typical subspaces Hn,δA ⊂ H⊗nA , Hn,δB ⊂ H⊗nB and Hn,δE ⊂ H⊗nE

with respect to the marginal states τ⊗nA , τ⊗nB and τ⊗nE , respectively. Then, we define the
(unnormalized) vectors

|τnδ 〉 = (Πn,δ
A ⊗Πn,δ

E ⊗Πn,δ
B )|τn〉 ∈ Hn,δA ⊗H

n,δ
E ⊗H

n,δ
B ,

and we denote its marginal by

τEn,δ = TrAnBn [|τnδ 〉〈τnδ |] .

Moreover, for any unitary U ∈ U
(
Hn,δA

)
we define the (unnormalized) vectors

|ψnU 〉 =

√
dim(Hn,δ

A )

dim(HnR)

(
PU ⊗ 1H⊗nE ⊗ 1H⊗nB

)
|τn〉 ∈ H⊗nR ⊗H

⊗n
E ⊗H

⊗n
B ,

and

|ψn,δU 〉 =

√
dim(Hn,δ

A )

dim(HnR)

(
PU ⊗ 1Hn,δE ⊗ 1Hn,δB

)
|τnδ 〉 ∈ H⊗nR ⊗H

n,δ
E ⊗H

n,δ
B ,

for some fixed projection P : H⊗nA → H⊗nA with HnR = Im (P ) ⊂ Hn,δA being some subspace
of dimension dim(HnR) = 2nR. Finally, we define the pure quantum state

|ψ̃nU 〉 =
1√

〈ψnU |ψnU 〉
|ψnU 〉 ∈ H⊗nR ⊗H

⊗n
E ⊗H

⊗n
B ,

8



for every n ∈ N and each U ∈ U
(
Hn,δA

)
.

Note that for every n ∈ N and U ∈ U
(
Hn,δA

)
we have

|ψ̃nU 〉 =
(
1Rn ⊗ V ⊗n

) (
|φn,URA′〉〈φ

n,U
RA′ |

)
,

for the pure quantum states |φn,URA′〉 ∈ H
n
R ⊗H

⊗n
A arising from normalizing the vectors√

dim(Hn,δ
A )

dim(HnR)

(
PU ⊗ 1H⊗nA

)
|φAA′〉⊗n.

We will now show that for each n ∈ N, there exists a unitary Un ∈ U
(
Hn,δA

)
such that

‖TrBn
[
|ψ̃nUn〉〈ψ̃

n
Un |
]
− P

2nR
⊗ (τE)⊗n‖1 → 0,

as n → ∞. Using Theorem 2.1 and identifying HnR with (C2)⊗Rn, we find a sequence of
quantum channels Dn : B(H⊗nB )→ B(HnR) satisfying

F (ω⊗Rn2 , (id⊗Rn2 ⊗Dn ◦ T⊗n)
(
|φn,URA′〉〈φ

n,U
RA′ |

)
)→ 1,

as n→∞. We conclude that the rate R is achievable for entanglement generation using T .
To finish the proof, we first apply Lemma 3.2 to estimate

‖TrBn
[
|ψ̃nU 〉〈ψ̃nU |

]
− P

2nR
⊗ (τE)⊗n‖1 ≤ 2‖TrBn [|ψnU 〉〈ψnU |]−

P

2nR
⊗ (τE)⊗n‖1,

for every n ∈ N and each U ∈ U
(
Hn,δ
A

)
. To estimate the right-hand side in the previous

inequality, we use the triangle inequality to obtain

‖TrBn [|ψnU 〉〈ψnU |]−
P

2nR
⊗ (τE)⊗n‖1 ≤ ‖TrBn [|ψnU 〉〈ψnU |]− TrBn

[
|ψn,δU 〉〈ψ

n,δ
U |
]
‖1

+ ‖TrBn
[
|ψn,δU 〉〈ψ

n,δ
U |
]
− P

2nR
⊗ τEn,δ‖1

+ ‖ P
2nR
⊗ τEn,δ −

P

2nR
⊗ (τE)⊗n‖1.

We will now derive upper bounds on the Haar-integrals of the three summands in the last
inequality. First, note that by monotonicity of the trace-distance under partial traces, Lemma
3.2 and 3.1 we have

‖ P
2nR
⊗ τEn,δ −

P

2nR
⊗ (τE)⊗n‖1 ≤ ‖τEn,δ − (τE)⊗n‖1

≤ ‖|τnδ 〉〈τnδ | − |τn〉〈τn|‖1 → 0,

as n→∞. Furthermore, by Lemma 3.3 we have that∫
U
(
Hn,δA

) ‖TrBn [|ψnU 〉〈ψnU |]− TrBn
[
|ψn,δU 〉〈ψ

n,δ
U |
]
‖1dη(U)

≤ ‖TrBn [|τn〉〈τn|]− TrBn [|τnδ 〉〈τnδ |] ‖1 → 0,

as n→∞. Finally, we note that by Theorem 2.2 we have∫
U
(
Hn,δA

) ‖TrBn
[
|ψn,δU 〉〈ψ

n,δ
U |
]
− P

2nR
⊗ τEn,δ‖1dη(U)

≤

√
2nR dim(Hn,δE ) Tr

[(
τBn,δ

)2]
≤
√

2n(R−H(T (σ))+H(T c(σ))+3δ) → 0,
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as n→∞ under the assumptions on the rate R from above. We conclude that∫
U
(
Hn,δA

) ‖TrBn [|ψnU 〉〈ψnU |]−
P

2nR
⊗ (τE)⊗n‖1dη(U)→ 0,

and hence there exists a sequence (Un)n∈N ∈ U
(
Hn,δA

)
N

satisfying

‖TrBn
[
|ψnUn〉〈ψ

n
Un |
]
− P

2nR
⊗ (τE)⊗n‖1 → 0,

as n→∞. Finally, we can combine this with the estimates from above to see that

‖TrBn
[
|ψ̃nUn〉〈ψ̃

n
Un |
]
− P

2nR
⊗ (τE)⊗n‖1 → 0,

as n→∞. By the argument from before, this finishes the proof.

In the previous lecture, we have seen that the entanglement generation capacity coincides
with the quantum capacity, and together with the previous theorem we conclude that

Ic (σ;T ) ≤ Q(T ),

for any quantum channel T : B(HA) → B(HB) and any quantum state σ ∈ D(HA). Op-
timizing over σ ∈ D(HA) and applying the resulting bound for the quantum channel T⊗k

instead of T implies1 the following corollary:

Corollary 4.2. For any quantum channel T : B(HA)→ B(HB) we have

lim sup
k→∞

1

k
Ic

(
T⊗k

)
≤ Q(T ).

1by using that Q(T⊗k) = kQ(T ).
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