
Quantum information theory (MAT4430) Spring 2021

Lecture 2: Toolbox for quantum mechanics

Lecturer: Alexander Müller-Hermes

In this lecture, we will collect some tools needed to study quantum information theory.
We will briefly introduce complex Euclidean spaces and classes of normal operators on these
spaces. Particular emphasize will be put on positive operators, which will represent states
in quantum mechanics.

1 Complex Euclidean spaces

Modern quantum mechanics is defined in the language of functional analysis, using the notion
of complex Hilbert spaces. Since large parts of quantum information theory can be studied
using finite-dimensional spaces, we will restrict to this case throughout this course. We start
with the following definition:

Definition 1.1 (Complex Euclidean space). A complex Euclidean space is a finite-dimensional
vector space H equipped with a complex form 〈·|·〉 : H×H → C with the following properties:

1. We have 〈x|x〉 > 0 for every x ∈ H, with equality if and only if x = 0.

2. We have 〈x+ λy|z〉 = 〈x|y〉+ λ〈y|z〉 for every x, y, z ∈ H and every λ ∈ C.

3. We have 〈x|y〉 = 〈y|x〉 for every x, y ∈ H.

These properties guarantee that the function x 7→
√
〈x|x〉 defines a norm on H. This norm

is called the Euclidean norm or 2-norm and it is denoted by ‖ · ‖2.

Note that we define the inner product to be conjugate-linear in the first argument and lin-
ear in the second argument, which is the usual convention in the physics literature (contrary
to the mathematics literature).

Every vector space has a basis, but on Euclidean spaces there is a stronger notion:

Definition 1.2 (Orthonormal basis). An orthonormal basis is a set of vectors {x1, . . . , xn}
that is maximal with the following properties1:

1. We have ‖xi‖2 = 〈xi|xi〉 = 1 for all i ∈ {1, . . . , n}.

2. We have 〈xi|xj〉 = 0 whenever i 6= j.

An orthonormal basis is, in particular, a basis. Hence, the cardinality n ∈ N of an
orthonormal basis of H coincides with the dimension dim(H). Given an orthonormal basis
{x1, . . . , xn} of a complex Euclidean space H, we can write any element y ∈ H as a linear
combination

y =

n∑
i=1

〈xi|y〉xi. (1)

Another way of saying this, is that the identity map 1H : H → H admits the decomposition

1H =

n∑
i=1

〈xi|·〉xi. (2)

Recall the following theorem:

1i.e., it cannot be extended by an additional vector xn+1 such that the properties still hold.
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Theorem 1.3. Every complex Euclidean space has an orthonormal basis.

By choosing an orthonormal basis, any complex Euclidean H can be identified with Cd

equipped with the standard inner product and for d = dim (H). Throughout this course, we
will always make this identification implicitely, and when saying “complex Euclidean space”
we always mean Cd for some d ∈ N. We will usually denote complex Euclidean spaces by
H and we will be using indices such as H1,H2,HA,HB,HAB, . . . to keep track of different
Euclidean spaces. Moreover, we will sometimes omit the “complex” in “complex Euclidean
spaces” for brevity: When saying “Euclidean space” we will always mean “complex Euclidean
space” in these lecture notes.

2 Bra-ket notation

A fundamental property of (complex) Euclidean spaces is a canonical identification with
their dual space:

Definition 2.1 (Dual space). For a complex Euclidean space H the dual space is given by

H∗ = {f : H → C : f linear}.

The following theorem is a fundamental result in the theory of complex Euclidean spaces
(and more general Hilbert spaces).

Theorem 2.2 (Baby version of Riesz representation). For any f ∈ H∗ there is a unique
y ∈ H satisfying

f(x) = 〈y|x〉,

for all x ∈ H.

Proof. Just evaluate f ∈ H∗ on an orthonormal basis of H, and use these values to build the
vector y ∈ H.

Most researchers in quantum information theory use the so-called bra-ket notation, and
we will do the same throughout the course. The basic idea of this notation is to cleverly
encode the identification between a complex Euclidean space H and its dual space H∗:

• Vectors |x〉 ∈ H are called kets.

• Functionals 〈y| ∈ H∗ are called bras.

• Applying a bra to a ket yields a bra(c)ket 〈y|x〉 ∈ C, i.e., the inner product on H.

• We write |x〉〈y| : H → H for the linear map acting as

|x〉〈y| (|z〉) = 〈y|z〉|x〉

on vectors |z〉 ∈ H.

Note that Theorem 2.2 is build into this notation by the identification |x〉 ↔ 〈x|. We will
occasionally need to fix a particular orthonormal basis on complex Euclidean spaces. Since
we always consider the concrete spaces Cd, we can define a canonical basis on them:
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Definition 2.3 (Computational basis). The computational basis of Cd is given by {|1〉, . . . , |d〉},
where

|i〉 =



0
...
0
1
0
...
0


,

with the 1 appearing in the ith position.

The term “computational basis” is inspired by quantum computing, where a quantum
system is used to solve computational tasks and where the computational basis serves as
a reference for information stored in the system. Using the computational basis, we can
express the kets living in Cd as “column vectors”, and consequently we should think of the
corresponding bras as “row vectors”. For vectors

|x〉 =

x1...
xd

 and |y〉 =

y1...
yd


in Cd we can therefore compute their inner product in the usual way, by setting

〈x|y〉 = (x1, . . . , xd)

y1...
yd

 =
∑
i

xiyi.

The bra-ket notation has many advantages when working with complex Euclidean spaces.
For example, (2) can be written in a very memorable way as

1H =

n∑
i=1

|xi〉〈xi|,

whenever {|x1〉, . . . , |xn〉} is an orthonormal basis of H, and this expression can easily be
inserted into complicated equations. We will see more examples later.

3 Linear operators and the Hilbert-Schmidt inner product
space

In the following, let H = Cd, HA = CdA and HB = CdB denote complex Euclidean spaces.
For any linear operator L : HA → HB, we define the operator norm as

‖L‖ = sup
x∈HA

‖Lx‖2
‖x‖2

.

We will denote by B(HA,HB) the set of (bounded) linear operators from HA to HB, and
by B(H) the set of (bounded) linear operators from H into itself. Of course, every linear
operator between complex Euclidean spaces (which are by definition finite-dimensional) is
automatically bounded. We choose this notation anyway, since it is standard in functional
analysis. Using the computational basis, we can identify operators in B(CdA ,CdB ) with
dB × dA-matrices with complex entries. Throughout this course, we will often use these two
descriptions interchangeably.
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Let us briefly mention some operations on linear operators: Given linear operators
L1, L2 ∈ B (H), we denote their commutator by

[L1, L2] = L1L2 − L2L1,

and their anticommutator by

{L1, L2} = L1L2 + L2L1.

We say that the operators L1 and L2 commute if [L1, L2] = 0 and that they anticommute
if {L1, L2} = 0. These notions will play an important role in the foundations of quan-
tum mechanics. We will also need the trace functional: After fixing an orthonormal basis
{x1, . . . , xd} of H, we may define a functional Tr : B (H)→ C by

Tr [L] =
d∑

i=1

〈xi|L|xi〉,

for any L ∈ B (H). It can be shown, that this definition does not depend on the choice of
the orthonormal basis, and we might as well consider the computational basis. Therefore, we
can take it as a general definition of the trace. Note that Tr [L] =

∑d
i=1 λi, where λi are the

eigenvalues of L, i.e., the d complex roots of the characteristic polynomial with multiplicities.
This will sometimes be useful.

Next, we will review the notion of adjoints:

Definition 3.1 (Adjoint operator). For any linear operator L ∈ B (HA,HB) we define the
adjoint L† ∈ B(HB,HA) as the unique operator satisfying

〈y|Lx〉 = 〈L†y|x〉,

for every |x〉 ∈ HA and |y〉 ∈ HB.

The adjoint operation takes a concrete form when expressed in the computational basis,
and we have

L† = L
T
,

where (·) denotes the entrywise complex conjugation, and (·)T the matrix transpose in the
computational basis. If not stated otherwise, all transposes and complex conjugations of
operators should be understood in the computational basis (although it is usually possible
to choose another basis without changing the definitions).

The vector space B(HA,HB) is itself a complex Euclidean space when equipped with the
Hilbert-Schmidt inner product

〈L1, L2〉HS = Tr
[
L†1L2

]
,

for L1, L2 ∈ B(HA,HB). Using the computational basis, we can define a canonical orthonor-
mal basis for the Hilbert-Schmidt inner product space B(CdA ,CdB ):

Definition 3.2 (Matrix units). For i ∈ {1, . . . , dA} and j ∈ {1, . . . , dB} we define the matrix
units as

|i〉〈j| =



0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0


,

with the 1 appearing in the (i, j)th position. The matrix units form an orthonormal basis of
B(CdA ,CdB ) with the Hilbert-Schmidt inner product.
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The Hilbert-Schmidt inner product can be understood as the usual inner product on
CdAdB by “viewing matrices as vectors”, i.e., by taking the entries of the corresponding
matrix as the entries of a vector. The corresponding 2-norm, given by ‖L‖HS =

√
〈L,L〉HS ,

is called the Hilbert-Schmidt norm or Frobenius norm.
Many important classes of operators can be defined by properties involving their adjoints.

A linear operator L ∈ B (H) is called

• normal, if
[
L,L†

]
= 0.

• selfadjoint, if L = L†.

• projection2, if L = L† = L2.

• unitary, if L−1 = L†.

We will denote the set of selfadjoint operators on H by B(H)sa, the set of unitary operators
on H by U(H), and the set of projections by Proj(H). All of these are subsets of the
normal operators. We will often need the following normal form (no pun intended) of normal
operators:

Theorem 3.3 (Spectral decomposition). For any normal operator L ∈ B(H), there exists
an orthonormal basis {|x1〉, . . . , |xd〉} of H consisting of eigenvectors of L such that

L =
d∑

i=1

λi|xi〉〈xi|,

where λi ∈ C are the eigenvalues of L corresponding to the eigenvector |xi〉.

The spectral decomposition is often referred to as a diagonalization, since the matrix
corresponding to the operator L in the orthonormal basis {|x1〉, . . . , |xd〉} is diagonal. If
two normal operators L1, L2 ∈ B(H) commute, then there exists an orthonormal basis
{|x1〉, . . . , |xd〉} of joint eigenvectors such that

L1 =

d∑
i=1

λi|xi〉〈xi| and L2 =

d∑
i=1

µi|xi〉〈xi|,

where λi, µi ∈ C are the eigenvalues of L1 and L2, respectively. In this case, we also say
that L1 and L2 are simultaneously diagonalizable.

4 Applying functions to (normal) operators

How can we apply functions such as exp or log to operators in B(H)? A priori, there
is no inherently correct way of defining an expression like exp(X) for a linear operator
X ∈ B(H), and it would be nice if this could be done in some consistent way preserving
the usual composition rules of functions. Constructions to achieve this goal run under the
name “functional calculus”, and they differ in the kinds of functions and subsets of B(H)
they apply to. For this course, we will mostly need to apply functions on normal operators,
and here the spectral decomposition will lead to a general theory. For completeness, we will
briefly mention two classes of functions where it is intuitively clear how to apply them to
operators.

2Some authors would call this an orthogonal projection, and they would refer to an operator satisfying
L = L2 as a projection. Throughout our course, we will only consider orthogonal projections and we will
simply call them “projections” for brevity.
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First, consider a function f : C→ C given by a polynomial, i.e.,

f(x) = akx
k + ak−1x

k−1 + · · · a1x+ a0,

with complex coefficients a0, . . . , ak ∈ C. Since B(H) is an algebra with unit element 1H,
it is clear how to define the operator f(X) ∈ B(H) for any linear operator X ∈ B(H). We
simply set

f(X) = akX
k + ak−1X

k−1 + · · · a1X + a01H ∈ B(H).

From this example it is also clear how to apply certain non-polynomial functions on operators.
Consider an entire function f : C → C, i.e., a function f that is analytic everywhere in C.
Such a function can be expressed as a power series f(x) =

∑∞
k=0 akx

k which is absolutely
convergent in C. Consider a linear operator X ∈ B(H). How should we define f(X)? To
make this expression consistent with the expression for polynomials, we should define

f(X) = lim
N→∞

N∑
k=0

akX
k =:

∞∑
k=0

akX
k,

where we set X0 = 1H. Does this define a linear operator? Yes, it does! It is easy to check
that

‖f(X)‖ 6
∞∑
k=0

|ak|‖X‖k <∞.

An example where this construction can be applied is the exponential function exp(X), which
is defined for any linear operator X ∈ B(H) on the Euclidean space H.

Obviously, not all complex functions are entire and during the course we will occasionally
apply the logarithm to linear operators. Luckily, we do not need to apply such functions to
any linear operator X ∈ B(H), but only to normal operators. Here, the spectral theorem
can be applied:

Definition 4.1 (Functions of normal operators). Let D ⊆ C denote some subset of complex
numbers, f : D → C a complex function and X ∈ B (H) a normal operator with spectrum
σ (X) ⊆ D. Then, we define

f(X) =

d∑
i=1

f(λi)|xi〉〈xi|,

where {|x1〉, . . . , |xd〉} is an orthonormal basis of eigenvectors of X (which exists by Theorem
3.3).

The reader should convince themselves that Definition 4.1 for a normal operator X gives
the same operator f(X) as derived above when f is a polynomial or an entire function.

5 Positive operators

We will also need the set of positive semidefinite operators:

Definition 5.1 (Positive operators). A linear operator P ∈ B(H) is called positive semidef-
inite if

〈x|P |x〉 > 0,

for any |x〉 ∈ H. If the previous inequality is always strict, we will call the operator positive
definite.
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For brevity, we will usually refer to positive semidefinite operators simply as positive op-
erators. Note that this includes the zero operator! This is in contrast to real numbers, where
we usually say non-negative to denote the positive real numbers and zero. The following
theorem collects alternative characterizations of positive operators:

Theorem 5.2 (Characterizing positive operators). For a linear operator P ∈ B(H) the
following are equaivalent:

1. P is positive.

2. P is selfadjoint and has non-negative eigenvalues.

3. There exists a positive operator Q ∈ B(H) such that P = Q2.

4. There exists an operator X ∈ B(H) such that P = X†X.

5. There exists an operator Y ∈ B(H,H′) for some Euclidean space H′ such that P =
Y †Y .

The operator Q in 3. is unique and it is called the positive square root of P . We will write√
P or P 1/2 to denote it.

Proof. We will first show that 1. and 2. are equivalent. Assume that P is positive as in
Definition 5.1. For any |x〉, |y〉 ∈ H we have

〈x+ iy|P |x+ iy〉 = 〈x|P |x〉+ 〈y|P |y〉+ i (〈x|P |y〉 − 〈y|P |x〉) > 0,

and we conclude that 〈x|P |y〉 − 〈y|P |x〉 = 0. Therefore, P is selfadjoint. Clearly, P has
positive eigenvalues, since otherwise, there would be a normalized eigenvector |x〉 satisfying
〈x|P |x〉 < 0 and contradicting our assumption.

For the other direction, assume that P is selfadjoint (and in particular normal) and has
positive eigenvalues. By the spectral decomposition, Theorem 3.3, we can write

P =

d∑
i=1

λi|xi〉〈xi|, (3)

for an orthonormal basis {|x1〉, . . . , |xd〉} of H consisting of eigenvectors of P , and with the
positive eigenvalues λi > 0. For any |y〉 ∈ H we can verify that

〈y|P |y〉 =

d∑
i=1

λi|〈y|xi〉|2 > 0,

and hence P is positive.
Now, we show the rest of the equivalences. Assume that P is selfadjoint and has positive

eigenvalues, and consider the spectral decomposition (3). We can now define a linear operator
Q ∈ B(H) by

Q =

d∑
i=1

√
λi|xi〉〈xi|.

By the equivalence of 1. and 2., we conclude that Q is positive. Furthermore, it is easy to
check that Q2 = P showing that 3. holds.

It is clear that 3. implies 4. and that 4. implies 5.. Finally, we assume that there exists an
operator Y ∈ B(H,H′) for some Euclidean space H′ such that P = Y †Y . For any |x〉 ∈ H
we have

〈x|P |x〉 = 〈x|Y †Y |x〉 = 〈Y x|Y x〉 > 0,

7



and hence P is positive.
Finally, we need to show that the positive square root in 3. is unique. By polynomial

interpolation, there exists a polynomial f ∈ R[X] with real coefficients satisfying f(λi) =
√
λi

for all eigenvalues λ1, . . . , λd > 0 of P . By the spectral theorem, we conclude that

Q = f(P ). (4)

Assume now, that there is another positive operator Q̃ ∈ B(H)+ satisfying Q̃2 = P . By the
spectral theorem we have Q̃ =

∑d
i=1 µi|vi〉〈vi| and therefore P =

∑d
i=1 µ

2
i |vi〉〈vi| for some

µi > 0 and an orthonormal basis of eigenvectors {|v1〉, . . . , |vd〉} ⊂ H. Since
[
Q̃, P

]
= 0, we

conclude, by (4), that [
Q, Q̃

]
= 0.

Now, we know that there exists a common orthonormal basis of eigenvectors {|w1〉, . . . , |wd〉} ⊂
H such that Q =

∑d
i=1 νi|wi〉〈wi| and Q̃ =

∑d
i=1 µi|wi〉〈wi|. By assumption, we have ν2i = µ2i

for every i ∈ {1, . . . , d}. Since νi, µi > 0, we conclude that µi = µ′i for all i ∈ {1, . . . , d} and
therefore Q = Q̃.

Based on the notion of positivity, there is another useful decomposition of general linear
operators:

Theorem 5.3 (Singular value decomposition). For any linear operator L ∈ B (HA,HB)
there exist orthonormal bases {|x1〉, . . . , |xdA〉} of HA and {|y1〉, . . . , |ydB 〉} of HB such that

L =
R∑
i=1

si|yi〉〈xi|,

for strictly positive si ∈ R+ called singular values of L, and where R equals the rank of L.

The singular value decomposition can also be written in a non-reduced form by setting

L =
D∑
i=1

si|yi〉〈xi|,

with D = min(dA, dB) and where some singular values may be zero. Sometimes this is
convenient, e.g., when we want to avoid mentioning the rank of L.

Proof. Consider the positive operators L†L ∈ B(HA) and LL† ∈ B(HB) and assume without
loss of generality that dA > dB (otherwise, exchange the roles of L and L† in the following
proof). By the spectral decomposition, there exists an orthonormal basis {|x1〉, . . . , |xdA〉}
of HA consisting of eigenvectors of L†L such that

L†L =

dA∑
i=1

λi|xi〉〈xi|,

where λi > 0 are the eigenvalues of L†L. We set

R = #{i ∈ {1, . . . , dA} : λi 6= 0},

and we assume without loss of generality that λ1, . . . , λR 6= 0 and λi = 0 for any i > R.
Since

‖L|xi〉‖22 = 〈xi|L†L|xi〉 = λi,
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we conclude that L|xi〉 = 0 if and only if λi = 0, and therefore R coincides with the rank of
the linear operator L. Next, observe that

LL† (L|xi〉) = L
(
L†L|xi〉

)
= λiL|xi〉,

for any i ∈ {1, . . . , dA}. For any i ∈ {1, . . . , R} we can define an eigenvector

|yi〉 :=
L|xi〉√
λi
6= 0,

of the operator LL† corresponding to eigenvalue λi. With this definition, we can verify that

〈yi|yj〉 =
〈xi|L†L|xj〉√

λiλj
= δij ,

for all i, j ∈ {1, . . . , R}, and we conclude that {|y1〉, . . . , |yR〉} is a set of orthonormal vectors
in HB. Extending this set gives an orthonormal basis {|y1〉, . . . , |ydB 〉}. Finally, we can check
that

L|xi〉 =
√
λi|yi〉,

for all i ∈ {1, . . . , R} and, since R is the rank of L, we obtain the singular value decomposition
with singular values si =

√
λi.

6 Tensor products

The second construction we need are tensor products, which can be defined in various ways,
and usually this is done quite abstractly. We will use a more concrete definition, which is
sometimes called the Kronecker product :

Definition 6.1 (Tensor product). For complex Euclidean spaces HA = CdA and HB = CdB

the tensor product is given by

HA ⊗HB =
{
f : {1, . . . , dA} × {1, . . . , dB} → C

}
,

where the vector addition is point-wise and we have the inner product

〈f, g〉 =
∑
i,j

f(i, j)g(i, j).

For vectors

|x〉 =

 x1
...
xdA

 and |y〉 =

 y1
...
ydB


we define the tensor product |x〉 ⊗ |y〉 ∈ HA ⊗HB of vectors as

(|x〉 ⊗ |y〉) (i, j) = xiyj ,

for any i ∈ {1, . . . , dA} and j ∈ {1, . . . , dB}. The vectors |x〉⊗ |y〉 are also called elementary
tensors and they span the tensor product HA ⊗HB.

Note that the previous definition extends to tensor products of higher order, such as

HA ⊗HB ⊗HC =
{
f : {1, . . . , dA} × {1, . . . , dB} × {1, . . . , dC} → C

}
and it can be verified easily that the tensor product of vectors is associative. The following
identities can be verified easily for all α, β ∈ C, all |x〉, |x1〉, |x2〉 ∈ HA and all |y〉, |y1〉, |y2〉 ∈
HB:
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• (|x1〉+ α|x2〉)⊗ |y〉 = |x1〉 ⊗ |y〉+ α (|x2〉 ⊗ |y〉).

• |x〉 ⊗ (|y1〉+ β|y2〉) = |x〉 ⊗ |y1〉+ β (|x〉 ⊗ |y2〉).

• 〈x1 ⊗ x2|y1 ⊗ y2〉 = 〈x1|y1〉〈x2|y2〉.

Note that the tensor product is not commutative! The tensor product CdA ⊗ CdB can be
identified with CdAdB by identifying the computational basis of the tensor product with the
tensor products of the computational bases of HA = CdA and HB = CdB . This identification
leads to the computational basis of CdA ⊗CdB given by

{|i〉 ⊗ |j〉 : i ∈ {1, . . . , dA}, j ∈ {1, . . . , dB}}.

The following theorem shows a fundamental property of tensor products, which is sometimes
used to define the tensor product in the first place:

Theorem 6.2 (Universal property). Consider complex Euclidean spaces HA, HB and HC

and a bilinear map f : HA ×HB → HC , i.e., such that the maps

|x〉 7→ f(|x〉, |y′〉) and |y〉 7→ f(|x′〉, |y〉),

are linear for every |x′〉 ∈ HA and every |y′〉 ∈ HB. Then, there exists a unique linear map
F : HA ⊗HB → HC satisfying

F (|x〉 ⊗ |y〉) = f(|x〉, |y〉),

for every |x〉 ∈ HA and every |y〉 ∈ HB.

Proof. Define the linear map F : HA ⊗HB → HC by linearly extending

F (|i〉 ⊗ |j〉) = f(|i〉, |j〉).

Since {|i〉 ⊗ |j〉}ij is a basis of HA ⊗ HB, this defines a unique linear map and the desired
property can be checked easily.

How do operators act between tensor products? Given operators X ∈ B (HA,HC) and
Y ∈ B (HA,HD) we define their tensor product as the operatorX⊗Y ∈ B (HA ⊗HB,HC ⊗HD)
acting as

(X ⊗ Y ) (|x〉 ⊗ |y〉) = X|x〉 ⊗ Y |y〉,

and extended linearly (using the universal property or the computational basis). Concretely,
for X ∈ B(CdA ,CdC ) given by the matrix X = [xij ]ij and Y ∈ B(CdB ,CdD) we have

X ⊗ Y =


x11Y x12Y · · · x1dAY
x21Y x22Y · · · x2dAY

...
. . .

...
xdC1Y xdC2Y · · · xdCdAY

 ,

in the computational basis of the tensor product spaces introduced above. With this expres-
sion, it is easy to check

Tr [X ⊗ Y ] = Tr [X] Tr [Y ] ,

σ (X ⊗ Y ) = {λµ : λ ∈ σ (X) , µ ∈ σ (Y )},

for any X ∈ B(HA) and Y ∈ B(HB).
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7 Matrix calculus

Whenever we talk about matrices without specifying a basis, we will implicitely assume
that they are expressed in the basis of matrix units. Moreover, whenever we consider the
Euclidean spaces Cd explicitely, we will use the terms operators and vectors interchangably
with their representations in the computational basis and the matrix units. We can now
express all objects introduced in the previous sections on matrices:

• Kets: Column vectors.

• Bras: Row vectors.

• Baby-Riesz representation: |x〉 =

x1...
xd

↔ (x1, . . . , xd) = 〈x|.

• Euclidean inner product: 〈x|y〉 = (x1, . . . , xd)

y1...
yd

 =
∑

i xiyi.

• Euclidean norm: ‖|x〉‖2 =
√∑

i |xi|2.

• Adjoint operator: X 7→ X† = X
T

, where T denotes the transposition in the com-
putational basis, and the conjugation is entry-wise:

X =

(
x11 x12
x21 x22

)
7→
(
x11 x21
x12 x22

)
= X†.

• Hilbert-Schmidt inner product: For X,Y ∈ B(CdA ,CdB ) we have

〈X,Y 〉HS = Tr
[
X†Y

]
=
∑
ij

xijyij .

• Hilbert-Schmidt norm: ‖X‖HS =
√∑

ij |xij |2.

• Unitaries and orthonormal bases: There is a 1-to-1 correspondence between or-
thonormal bases {|x1〉, . . . , |xd〉} of Cd and unitary operators U ∈ U

(
Cd
)

such that
U |i〉 = |xi〉 for every i ∈ {1, . . . , d}. This can written explicitely by noting that

U =
(
|x1〉, . . . , |xd〉

)
,

i.e., the vectors |xi〉 appear as the columns of U , defines a unitary matrix.

• Spectral decomposition: For any normal operator X ∈ B(Cd) there exists a unitary
U ∈ U

(
Cd
)

such that

UXU † =


λ1

λ2
. . .

λd

 ,

where λ1, . . . , λd are the eigenvalues of X.

11



• Singular value decomposition: For any operator X ∈ B(CdA ,CdB ) there exist
unitaries U ∈ U

(
CdA

)
and V ∈ U

(
CdB

)
such that

UXV † =

(
S 0
0 0

)
,

where

S =


s1

s2
. . .

sd

 ,

is the diagonal matrix containing the singular values on the diagonal.

• Tensor product: CdA ⊗CdB ' CdAdB and

|x〉 ⊗ |y〉 =


x1|y〉
x2|y〉

...
xdA |y〉

 .

• Tensor product of operators: For X ∈ B(CdA ,CdC ) and Y ∈ B(CdB ,CdD) we
have

X ⊗ Y =


x11Y x12Y · · · x1dAY
x21Y x22Y · · · x2dAY

...
. . .

...
xdC1Y xdC2Y · · · xdCdAY

 .

This definition is sometimes called the Kronecker product.

• Tensor-operators as block matrices: Any X ∈ B(CdA ⊗CdB ) can be written as

X =
∑
ij

|i〉〈j| ⊗Xij =


X11 X12 · · · X1dA

X21 X22 · · · X2dA
...

. . .
...

XdA1 XdA2 · · · XdAdA

 ,

with operators Xij ∈ B
(
CdB

)
.

It might be helpful to keep these concrete representations in mind, and to use them to get
a better feeling for the objects introduced in quantum information theory. At some point,
it should come natural to you to do explicit computations, which is easiest when using the
concrete representations introduced above.
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