
Quantum information theory (MAT4430) Spring 2021

Lecture 6: Bipartite entanglement (Part II)

Lecturer: Alexander Müller-Hermes

In the previous lectures, we have introduced different cones in the real vector space
B(HA⊗HB)sa which play a role in the theory of quantum entanglement. Specifically, these
were the

• Separable cone:

Sep (HA,HB) = cone{ρA ⊗ σB : ρA ∈ D(HA), σB ∈ D(HB)}.

• Block-positive cone:

BP (HA,HB) = {CP : P : B(HA)→ B(HB) positive}.

• Cone of positive semidefinite matrices:

B (HA ⊗HB)+ = {XAB positive semidefinite}.

• Positive partial transpose cone:

PPT (HA,HB) = {XAB : XΓ
AB = (idA ⊗ ϑB) (XAB) ∈ B (HA ⊗HB)+}.

Two other cones can be formed as the intersection

B (HA ⊗HB)+ ∩ PPT (HA,HB) ,

and the join (or sum)
B (HA ⊗HB)+ ∨ PPT (HA,HB) .

We will now continue our study of these cones and in particular focus on the previous two
cases.

1 Cones, duality and classes of linear maps

To study these cones, we will need the following lemma:

Lemma 1.1 (Dual of positive PPT operators). For complex Euclidean spaces HA and HB
the cone PPT (HA,HB) is selfdual and we have(

PPT (HA,HB) ∩B(HA ⊗HB)+
)∗

= B(HA ⊗HB)+ ∨ PPT (HA,HB) .

Proof. To show that (PPT (HA,HB))∗ = PPT (HA,HB), we note that

〈Y,X〉HS = Tr [Y X] = Tr
[
Y ΓXΓ

]
= 〈Y Γ, XΓ〉HS ,

where we used that the transpose map is selfadjoint and its own inverse. We conclude
that Y ∈ B (HA ⊗HB)sa satisfies 〈Y,X〉 > 0 for any X ∈ PPT (HA,HB) if and only if
Y Γ satisfies 〈Y Γ, XΓ〉 > 0 for any XΓ ∈ B (HA ⊗HB)+. But this holds if and only if
Y Γ ∈ B (HA ⊗HB)+ which is equivalent to Y ∈ PPT (HA,HB).
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By elementary properties of duals we have(
PPT (HA,HB) ∩B(HA ⊗HB)+

)∗
= B(HA ⊗HB)+ ∨ PPT (HA,HB).

To show that the closure is not needed, we consider any X ∈ B(HA⊗HB)+∨PPT (HA,HB),
which we can write as X = X1 + X2 with X1 ∈ B(HA ⊗ HB)+ and X2 ∈ PPT (HA,HB).
Since Tr [X1] > 0 and Tr [X2] > 0 (the transposition is trace-preserving), we can normalize
the trace of X and find that

X

Tr [X]
=

Tr [X1]

Tr [X]

X1

Tr [X1]
+

Tr [X2]

Tr [X]

X2

Tr [X2]
.

Since Tr [X] = Tr [X1] + Tr [X2], we conclude that

X

Tr [X]
∈ conv

(
D (HA ⊗HB) ∪DΓ (HA ⊗HB)

)
,

with
DΓ (HA ⊗HB) = PPT (HA,HB) ∩ {Y ∈ B(HA ⊗HB)sa : Tr [Y ] = 1}.

Since both D (HA ⊗HB) and DΓ (HA ⊗HB) are compact, we conclude that

B = conv
(
D (HA ⊗HB) ∪DΓ (HA ⊗HB)

)
,

is compact as the convex hull of a compact set. By the previous argument, it is a compact
base of B(HA⊗HB)+ ∨PPT (HA,HB). This shows that this join of the two cones is closed
and the proof is finished.

Now, we can summarize all inclusions and dualities between these cones as in Figure 1.

Figure 1: Inclusions and dualities of the cones introduced so far.

Among the cones introduced above, some of them were given as Choi matrices of certain
classes of linear maps. For instance, the block-positive cone was defined as the cone of Choi
matrices of positive maps, and we have seen before that the cone of positive semidefinite
matrices arises as the cone of Choi matrices of completely positive maps. These are no
coincidences! By the Choi-Jamiolkowski isomorphism any subcone of B(HA⊗HB)sa defines
a subcone of Hermiticity preserving linear maps P : HA → HB (which in the following cases
will always be positive). Such a map is called

• entanglement breaking if CP ∈ Sep (HA,HB).
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• completely positive (CP) if CP ∈ B (HA ⊗HB)+.

• completely copositive (coCP) if CP ∈ PPT (HA,HB), which is equivalent to ϑB ◦ P
being CP.

• decomposable if CP ∈ B (HA ⊗HB)+ ∨ PPT (HA,HB), which is equivalent to P =
T1 + ϑB ◦ T2 for T1, T2 CP.

• positive if CP ∈ BP (HA,HB).

We finish this section with the following lemma characterizing the cone BP (HA,HB)
without explicitly using positive maps:

Lemma 1.2 (Characterizing block-positivity). For complex Euclidean spaces HA and HB
consider an operator XAB ∈ B(HA ⊗HB)sa. The following are equivalent:

1. We have XAB ∈ BP (HA,HB).

2. We have
(〈x| ⊗ 〈y|)XAB (|x〉 ⊗ |y〉) > 0,

for every |x〉 ∈ HA and every |y〉 ∈ HB.

Proof. Consider the Hermiticity-preserving map Q : B(HA)→ B(HB) satisfying XAB = CQ,
which exists by the Choi-Jamiolkowski isomorphism. The equivalence of the two statements
follows from

(〈x| ⊗ 〈y|)XAB (|x〉 ⊗ |y〉) = 〈y|Q(|x〉〈x|)|y〉,

which holds for every |x〉 ∈ HA and every |y〉 ∈ HB by using the necklace identities. The map
Q is positive if and only if the right-hand side in the previous equality is non-negative.

2 When are two qubits entangled?

We will now show that all bipartite quantum states ρAB ∈ D(C2⊗C2) with positive partial
transpose are separable. This completely characterizes the entangled quantum states of two
qubits. Using the cones from the last lecture, we formulate this result as:

Theorem 2.1. We have Sep
(
C2,C2

)
= PPT

(
C2,C2

)
∩B(C2 ⊗C2)+.

In the following, we will go through the most elegant proof that I know. It is due to
Aubrun and Szarek, and uses Brouwer’s fixed point theorem at a key step:

Theorem 2.2 (Brouwer’s fixed point theorem). Let K ⊂ V denote a convex and compact
subset of a real Euclidean space V. Any continuous function f : K → K has a fixed point,
i.e., there exists x ∈ K such that f(x) = x.

To prove Theorem 2.1 we will show that every positive map P : B(C2) → B(C2) is
decomposable, and thereby we will show that

B(C2 ⊗C2)+ ∨ PPT
(
C

2,C2
)

= BP
(
C

2,C2
)
.

Taking duals of this identity finishes the proof. In the exercises, we have studied the unital1

and trace-preserving positive maps P : B(C2)→ B(C2). We have shown the following facts:

1Such that P (1HA) = 1HB
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• For any unital an trace-preserving positive map P : B(C2) → B(C2) there exist
unitaries U, V ∈ U

(
C2
)

such that

PU,V = AdU ◦P ◦AdV

is diagonal in the Pauli basis, i.e., such that there are λi ∈ R satisfying

PU,V (σi) = λiσi,

for any i ∈ {0, 1, 2, 3} with

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that λ0 = 1 by unitality.

• The map PU,V is positive if and only if |λi| 6 1 for any i ∈ {1, 2, 3}.

• The map PU,V is completely positive if and only if

1 + λ1 + λ2 + λ3 > 0

1 + λ1 − λ2 − λ3 > 0

1− λ1 + λ2 − λ3 > 0

1− λ1 − λ2 + λ3 > 0.

These inequalities define a tetrahedron TetrCP inside the cube [−1, 1]3 ⊂ R3.

• The map PU,V is completely copositive if and only if

1 + λ1 − λ2 + λ3 > 0

1 + λ1 + λ2 − λ3 > 0

1− λ1 − λ2 − λ3 > 0

1− λ1 + λ2 + λ3 > 0.

These inequalities define another tetrahedron TetrcoCP inside the cube [−1, 1]3 ⊂ R3.

• The intersection TetrCP ∩ TetrcoCP is a regular octahedron (i.e., the dual of the cube
[−1, 1]3).

• The union TetrCP ∪TetrcoCP is the stellated octangula and its convex hull is the entire
cube [−1, 1]3 ⊂ R3. See Figure 2 for a picture of this geometric configuration.
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Figure 2: The tetrahedra TetrCP and TetrcoCP (which one is which?) inside the cube [−1, 1]3

The last point implies the following lemma:

Lemma 2.3. Any unital and trace-preserving positive map P : B(C2) → B(C2) is decom-
posable.

The following normal form will allow us to reduce the general case to the previous lemma:

Theorem 2.4 (Sinkhorn normal form). Let H denote a complex Euclidean space. Consider
a positive map P : B(H)→ B(H) such that P (|ψ〉〈ψ|) ∈ B(H)+ is invertible for any |ψ〉 ∈ H.
Then, there exist invertible operators X ∈ B(H) and Y ∈ B(H) such that the linear map

P̃ = AdY ◦P ◦AdX

is trace-preserving and unital, i.e., satisfies P̃ (1H) = 1H.

Note that the condition that P (|ψ〉〈ψ|) ∈ B(H)+ is invertible for any |ψ〉 ∈ H is equivalent
to saying that CP belongs to the interior of BP

(
C2,C2

)
.

Proof. Note that a linear map L : B(H)→ B(H) is trace-preserving if and only if its adjoint
L∗ is unital since

Tr [L(X)] = Tr [L∗ (1H)X] ,

which coincides with Tr [X] for every X ∈ B(H) if and only if L∗ (1H) = 1H. To prove
the Sinkhorn normal form consider the (non-linear!) inverse maps inv : int (B(H)+) →
int (B(H)+) mapping any strictly positive operator to its inverse. Consider now the non-
linear map Λ : D(H)→ D(H) given by

Λ(X) =
inv ◦ P ∗ ◦ inv ◦ P (X)

Tr [inv ◦ P ∗ ◦ inv ◦ P (X)]
,

where we used that P (τ) ∈ int (B(H)+) for any τ ∈ D(H). The map Λ is a continuous map
from the convex body D(H) into itself. By Brouwer’s fixed point theorem such a map has a
fixed point ρ ∈ D(H), i.e., a point satisfying Λ(ρ) = ρ. Defining σ = P (ρ) this implies that

P ∗(σ−1) = λρ−1, (1)
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for some λ > 0. Now set X = ρ1/2 and Y = σ−1/2 and

P̃ = AdY ◦P ◦AdX .

We can verify that
P̃ (1H) = AdY ◦P (ρ) = σ−1/2σσ−1/2 = 1H,

and, using (1), we can verify that

P̃ ∗ (1H) = (AdX ◦P ∗ ◦AdY ) (1H) = ρ1/2P ∗
(
σ−1

)
ρ1/2 = λ1H.

Finally, we note that

dim(H) = Tr
[
P̃ (1H)

]
= Tr

[
P̃ ∗ (1H)

]
= λdim (H) ,

and we conclude that λ = 1.

Now, we can prove Theorem 2.1:

Proof of Theorem 2.1. By Lemma 1.1 it suffices to prove that

B(C2 ⊗C2)+ ∨ PPT
(
C

2,C2
)

= BP
(
C

2,C2
)
.

One inclusion is clear. For the other conclusion consider a point CP ∈ BP
(
C2,C2

)
corre-

sponding to a positive map P : B(C2) → B(C2) via the Choi-Jamiolkowski isomorphism.
For ε > 0 consider the map Pε : B(C2)→ B(C2) given by

Pε(X) = P (X) + ε1C2 Tr [X] ,

and note that Pε(|ψ〉〈ψ|) ∈ B(H)+ is invertible for any |ψ〉 ∈ H. For any ε > 0 we conclude
by Sinkhorn’s normal form that there are invertible operators A ∈ B(C2) and B ∈ B(C2)
(depending on ε) such that

P̃ε = AdA ◦Pε ◦AdB

is positive, unital and trace-preserving. By the exercises, we know that any such maps is
decomposable, i.e., can be written as

P̃ε = T1 + ϑ ◦ T2

for completely positive maps T1, T2 : B(C2)→ B(C2). Now, we note that

Pε = AdA−1 ◦T1 ◦AdB−1 + AdA−1 ◦ϑ ◦ T2 ◦AdB−1

= AdA−1 ◦T1 ◦AdB−1 +ϑ ◦Ad(A−1)T ◦T2 ◦AdB−1 ,

is decomposable as well. Therefore, we have show that

CPε = CP + ε1C2 ⊗ 1C2 ∈ B(C2 ⊗C2)+ ∨ PPT
(
C

2,C2
)
,

for any ε > 0. Since CP ∈ BP
(
C2,C2

)
was chosen freely, and since the cone B(C2⊗C2)+∨

PPT
(
C2,C2

)
is closed, we can conclude that

BP
(
C

2,C2
)
⊆ B(C2 ⊗C2)+ ∨ PPT

(
C

2,C2
)
.

This finishes the proof.

6



3 Examples of entangled PPT operators

Consider complex Euclidean spaces HA and HB with dimensions dA and dB, respectively.
If (dA, dB) /∈ {(2, 2), (2, 3), (3, 2)}, then we want to construct an entangled PPT operator
(which we can always normalize to a quantum state). By Lemma 1.1 this can be achieved
by constructing a point

WAB ∈ BP (HA,HB) \
(
B(HA ⊗HB)+ ∨ PPT (HA,HB)

)
.

The existence of a quantum state ρAB ∈ PPT
(
CdA ,CdB

)
∩B(CdA ⊗CdB )+ such that

Tr [ρABWAB] < 0,

follows from the hyperplane separation theorem2. To make our life a bit simpler, it is helpful
to note the following facts:

• It is easy to check the inclusion ρAB ∈ PPT
(
CdA ,CdB

)
∩ B(CdA ⊗ CdB )+ for an

operator ρAB by computing eigenvalues.

• If we come up with a pair WAB ∈ BP (HA,HB) and ρAB ∈ PPT
(
CdA ,CdB

)
∩B(CdA⊗

CdB )+ such that Tr [WABρAB] < 0, then we conclude that both ρAB is entangled
(witnessed by WAB) and that WAB /∈ B(HA⊗HB)+∨PPT (HA,HB) (by Lemma 1.1).

The most simple construction of such a pair is based on the following notion:

Definition 3.1 (Unextendible product set). Let HA and HB denote complex Euclidean
spaces. A finite set of product vectors

S = {|a1〉 ⊗ |b1〉, . . . , |am〉 ⊗ |bm〉} ⊂ HA ⊗HB

is called an unextendible product set (UPS) if the following conditions hold:

1. The vectors in S are orthonormal.

2. We have m < dim (HA ⊗HB).

3. The orthogonal complement S⊥ does not contain any non-zero product vector |x〉⊗|y〉 ∈
HA ⊗HB.

Let us construct an example of a UPS:

Example 1 (Unextendible product bases for C3 ⊗C3). Consider the normalized vectors

|v1〉 = |1〉,

|v2〉 =
1√
2

(|1〉 − |2〉) ,

|v3〉 =
1√
2

(|2〉 − |3〉) ,

|v4〉 = |3〉,

|v5〉 =
1√
3

(|1〉+ |2〉+ |3〉) .

These vectors have two important properties that can be easily verified:

• Any triple {|vi〉, |vj〉, |vk〉} of distinct vectors spans C3.

7



Figure 3: Orthogonality relations as edges.

• The orthogonality relations between the vectors can be visualized by the graph in
Figure 3 with vertices v1, . . . , v5 and where we draw an edge between vertices vi and vj
if and only if 〈vi|vj〉 = 0. Note that these edges are the diagonals of a regular pentagon.

To construct an UPS, let us first consider the set

Sπ = {|vi〉 ⊗ |vπ(i)〉 : i ∈ {1, . . . , 5}},

for some permutation π ∈ S5. We claim that the orthogonal complement S⊥π for any permu-
tation π ∈ S5 does not contain any product vectors. To see this, assume that |x〉⊗ |y〉 ∈ S⊥π ,
i.e.,

〈x|vi〉〈y|vπ(i)〉 = 0 for every i ∈ {1, . . . , 5}.

By the pidgeonhole principle there are three distinct indices i, j, k ∈ {1, . . . , 5} such that

〈x|vi〉 = 〈x|vj〉 = 〈x|vk〉 = 0 or 〈y|vπ(i)〉 = 〈y|vπ(j)〉 = 〈y|vπ(k)〉 = 0.

Since the triples {|vi〉, |vj〉, |vk〉} and {|vπ(i)〉, |vπ(j)〉, |vπ(k)〉} span C3, we conclude that either
|x〉 = 0 or |y〉 = 0.

Now, we only have to find a permutation π ∈ S5, such that the vectors in Sπ are orthog-
onal. There is a very nifty graph-theoretic construction to do this: Start with the vertices
v1, . . . , v5 forming a pentagon. In the following, we will distinguish between diagonals and
sides of the pentagon (see Figure 4).

Figure 4: Diagonals in blue and sides in red.

We will now represent each product vector |vi〉 ⊗ |vπ(i)〉 by a directed edge (arrow) from
vi to vπ(i). See Figure 5 for two examples.

2Here, ρAB defines a hyperplane separating WAB from the closed cone B(HA ⊗HB)+ ∨ PPT (HA,HB).
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Figure 5: Some product vectors represented by arrows.

The set Sπ for a permutation π ∈ S5 corresponds to a graph with vertices v1, . . . , v5 and
directed edges such that each vertex vi is the starting point of exactly one edge and the end
point of exactly one edge. In particular, decomposing the vertex set into disjoint cycles (see
Figure 6) would ensure this condition.

Figure 6: Decomposing vertices into disjoint cycles.

How can we enforce orthogonality between vectors in Sπ? Note that in this graph-
theoretic consideration the orthogonality

|vi〉 ⊗ |vπ(i)〉 ⊥ |vj〉 ⊗ |vπ(j)〉

is equivalent to the condition that a diagonal of the pentagon has to connect either the two
starting points vi and vj or the two end points vπ(i) and vπ(j) of the arrows vi → vπ(i) and
vj → vπ(j). See Figure 7 for an example of a pair of arrows not leading to orthogonal vectors.

Figure 7: An example of two arrows not leading to orthogonal vectors.

Two examples of pairs of arrows leading to orthogonal vectors can be seen in Figure 8.
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Figure 8: Two orthogonal pairs of arrows.

Note that disjoint arrows involving two vertices always lead to orthogonal vectors! So,
how can we enforce orthogonality between vectors in Sπ? A simple way is to decompose
the vertices into disjoint cycles with edges alternating between sides of the pentagon and
diagonals of the pentagon and that at most one cycle has length one. This can be seen in
Figure 9

Figure 9: The solution.

We conclude that the set

S = {|v1〉 ⊗ |v1〉, |v2〉 ⊗ |v4〉, |v3〉 ⊗ |v2〉, |v4〉 ⊗ |v5〉, |v5〉 ⊗ |v3〉},

is an UPS in C3 ⊗C3.

To construct an entangled PPT state in D
(
C3 ⊗C3

)
consider the UPS S constructed in

the previous example. Let PS ∈ Proj (HA ⊗HB) denote the projector onto span (S) given
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by

PS =

m∑
i=1

|ai〉〈ai| ⊗ |bi〉〈bi|.

Since S is an UPS, we have

ε = inf{(〈x| ⊗ 〈y|)PS (|x〉 ⊗ |y〉) : |x〉, |y〉 ∈ C3, 〈x|x〉 = 〈y|y〉 = 1} > 0. (2)

Consider now the operator
WAB = PS − ε1HA ⊗ 1HB .

By (2) we have
(〈x| ⊗ 〈y|)WAB (|x〉 ⊗ |y〉) > 0,

for all |x〉, |y〉 ∈ C3, and we conclude that WAB ∈ BP
(
C3 ⊗C3

)
. Next, consider the

normalized projector onto the orthogonal complement S⊥ given by

ρAB =
1HA ⊗ 1HB − PS

Tr [1HA ⊗ 1HB − PS ]
.

Clearly, we have ρAB ∈ D
(
C3 ⊗C3

)
and since the vectors in S have real entries, we have

ρΓ
AB = ρAB. We conclude that

ρAB ∈ PPT
(
C

3,C3
)
∩B(C3 ⊗C3)+.

Finally, note that
Tr [WABρAB] = −ε < 0,

and we conclude that ρAB is entangled, and WAB = CQ for a non-decomposable positive
map Q : B(HA)→ B(HB).
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