EXERCISES 12

Excercise 1 (Norms of block matrices). Let \mathcal{H} denote a complex Euclidean space. We will show that

$$
\| \sum_{i, j=1}^{d}|i\rangle\langle j| \otimes X_{i, j}\left\|_{\infty} \leqslant d \max _{i, j}\right\| X_{i, j} \|_{\infty}
$$

for any operators $X_{i, j} \in B(\mathcal{H})$ for $i, j \in\{1, \ldots, d\}$. Follow the steps below:
(1) Recall that $\left.\|X\|_{\infty}=\max _{v, w}|\langle v| X| w\right\rangle \mid$ where the maximum is over vectors $|v\rangle,|w\rangle \in \mathcal{H}$ satisfying $\langle v \mid v\rangle=\langle w \mid w\rangle=1$. Use this to show that

$$
\| \sum_{i, j=1}^{d}|i\rangle\langle j| \otimes X_{i, j}\left\|_{\infty} \leqslant\right\| \sum_{i, j=1}^{d}\left\|X_{i, j}\right\|_{\infty}|i\rangle\langle j| \|_{\infty}
$$

Hint: Note that vectors $|v\rangle \in \mathbb{C}^{d} \otimes \mathcal{H}$ can be written as $|v\rangle=\sum_{i=1}^{d}|i\rangle \otimes\left|v_{i}\right\rangle$ with $\left|v_{i}\right\rangle \in \mathcal{H}$ for each i.
(2) Use equivalence of the Schatten- p-norms to show that

$$
\left\|\sum_{i, j=1}^{d}\right\| X_{i, j} \|_{\infty}|i\rangle\langle j| \|_{\infty} \leqslant\left(\sum_{i, j=1}^{d}\left\|X_{i, j}\right\|_{\infty}^{2}\right)^{1 / 2}
$$

(3) Finally, show that

$$
\left(\sum_{i, j=1}^{d}\left\|X_{i, j}\right\|_{\infty}^{2}\right)^{1 / 2} \leqslant d \max _{i, j}\left\|X_{i, j}\right\|_{\infty}
$$

Excercise 2 (The diamond norm). For a linear map $L: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ we define

$$
\|L\|_{\diamond}=\sup _{n \in \mathbb{N}}\left\|\operatorname{id}_{n} \otimes L\right\|_{1 \rightarrow 1}
$$

(1) Use the Schmidt decomposition to show that

$$
\left\|\mathrm{id}_{n} \otimes L\right\|_{1 \rightarrow 1} \leqslant\left\|\operatorname{id}_{B\left(\mathcal{H}_{A}\right)} \otimes L\right\|_{1 \rightarrow 1},
$$

and conclude that $\|L\|_{\diamond}<\infty$. Hint: Remember the extreme points of the $\|\cdot\|_{1}$-unit ball.
(2) Use duality of norms and Exercise 1 to show that

$$
\|L\|_{\diamond} \leqslant \operatorname{dim}\left(\mathcal{H}_{A}\right)\|L\|_{1 \rightarrow 1} .
$$

(3) Consider the transpose map $\vartheta_{d}: B\left(\mathbb{C}^{d}\right) \rightarrow B\left(\mathbb{C}^{d}\right)$ in the computational basis and show that

$$
\left\|\vartheta_{d}\right\|_{\diamond}=d
$$

Note that this shows that the general upper bound on the diamond norm is sharp.
(4) Show that we have

$$
\left\|L_{1} \otimes L_{2}\right\|_{\diamond} \leqslant\left\|L_{1}\right\|_{\diamond}\left\|L_{2}\right\|_{\diamond}
$$

for any pair of linear maps $L_{1}: B\left(\mathcal{H}_{A_{1}}\right) \rightarrow B\left(\mathcal{H}_{B_{1}}\right)$ and $L_{2}: B\left(\mathcal{H}_{A_{2}}\right) \rightarrow$ $B\left(\mathcal{H}_{B_{2}}\right)$.

Excercise 3 (Bose-symmetry). Let \mathcal{H} be a complex Euclidean space and $N \in \mathbb{N}$. We will now prove two important facts about the Bose-symmetric operators and their relationship with the symmetric subspace of operators.
(1) Show that

$$
B\left(\mathcal{H}^{\vee N}\right)=\operatorname{span}_{\mathbb{C}}\left\{|v\rangle\left\langle\left. v\right|^{\otimes N}\right\},\right.
$$

and that

$$
B\left(\mathcal{H}^{\vee N}\right)_{s a}=\operatorname{span}_{\mathbb{R}}\left\{|v\rangle\left\langle\left. v\right|^{\otimes N}\right\}\right.
$$

Hint: Define $\left|v_{\alpha, \beta}\right\rangle=e^{i \alpha}|x\rangle+e^{i \beta}|y\rangle$ and find a function $f(\alpha, \beta)$ satisfying

$$
|x\rangle\left\langle\left.\left. y\right|^{\otimes N}=\frac{1}{2 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f(\alpha, \beta) \right\rvert\, v_{\alpha, \beta}\right\rangle\left\langle\left. v_{\alpha, \beta}\right|^{\otimes n} d \alpha d \beta\right.
$$

(2) Show that any quantum state $\rho \in D\left(\mathcal{H}^{\otimes N}\right) \cap B(\mathcal{H})^{\vee N}$ admits a purification $|\psi\rangle \in(\mathcal{H} \otimes \mathcal{H})^{\vee N}$. Hint: Use $|\psi\rangle=\operatorname{vec}(\sqrt{\rho})$ with an appropriate ordering of the tensor factors.

Excercise 4 (The de-Finetti theorem and its consequences). For $m \in \mathbb{N}$ consider some pure state $|\psi\rangle \in \mathcal{H}^{\vee m}$. We will show that for any $n \in \mathbb{N}$ satisfying $n \leqslant m$, there exists a quantum state

$$
\sigma \in \operatorname{conv}\left(|v\rangle\left\langle\left. v\right|^{\otimes n}: \mid v\right\rangle \in \mathcal{H},\langle v \mid v\rangle=1\right)
$$

such that

$$
\left\|\operatorname{Tr}_{m \rightarrow n}(|\psi\rangle\langle\psi|)-\sigma\right\|_{1} \leqslant \frac{n(d+n)}{m+d}
$$

where $d=\operatorname{dim}(\mathcal{H})$ and $\operatorname{Tr}_{m \rightarrow n}$ denotes the partial trace over any $(m-n)$ of the m tensor factors. In the following, we use

$$
d[k]=\binom{k+d-1}{k}
$$

Follow the steps below:
(1) Define the linear map clone ${ }_{n \rightarrow m}: B\left(\mathcal{H}^{\vee n}\right) \rightarrow B\left(\mathcal{H}^{\vee m}\right)$ by

$$
\operatorname{clone}_{n \rightarrow m}(X)=\frac{d[n]}{d[m]} P_{s y m}^{m}\left(X \otimes \mathbb{1}_{\mathcal{H}}^{\otimes(m-n)}\right) P_{s y m}^{m}
$$

and the linear map $\mathrm{MP}_{m \rightarrow n}: B\left(\mathcal{H}^{\vee m}\right) \rightarrow B\left(\mathcal{H}^{\vee n}\right)$ by

$$
\operatorname{MP}_{m \rightarrow n}(X)=d[m] \int_{\mathcal{U}(\mathcal{H})}\left\langle\phi_{U}^{\otimes m}\right| X\left|\phi_{U}^{\otimes m}\right\rangle\left|\phi_{U}\right\rangle\left\langle\left.\phi_{U}\right|^{\otimes n} d \eta(U),\right.
$$

where $\left|\phi_{U}\right\rangle=U|0\rangle$ for any $U \in \mathcal{U}(\mathcal{H})$. Verify that these maps are quantum channels.
(2) Show that

$$
\left.\langle\mid b\rangle\left\langle\left. b\right|^{\otimes n}, \operatorname{MP}_{m \rightarrow n}\left(|a\rangle\left\langle\left. a\right|^{\otimes m}\right)\right\rangle_{H S}=\frac{d[m]}{d[m+n]} \sum_{s=0}^{n} \frac{\binom{m}{s}\binom{n}{s}}{\binom{n+m}{s}}\right|\langle a \mid b\rangle\right|^{2 s},
$$

for $|a\rangle,|b\rangle \in \mathcal{H}$ satisfying $\langle a \mid a\rangle=\langle b \mid b\rangle=1$. Hint: Find a symmetric projection $P_{s y m}^{n+m}$ and write is as a sum involving the unitaries U_{σ} for $\sigma \in$ S_{n+m}.
(3) Use the prvious subexercise to show the identity

$$
\mathrm{MP}_{m \rightarrow n}=\frac{d[m]}{d[m+n]} \sum_{s=0}^{n} \frac{d[n]}{d[s]} \frac{\binom{m}{s}\binom{n}{s}}{\binom{m+n}{s}} \text { clone }_{s \rightarrow n} \circ \operatorname{Tr}_{m \rightarrow s} .
$$

(4) By splitting off the summand for $s=n$ show that

$$
\mathrm{MP}_{m \rightarrow n}=\left(1-\epsilon_{m, n, d}\right) \operatorname{Tr}_{m \rightarrow n}+\epsilon_{m, n, d} R,
$$

for some quantum channel $R: B\left(\mathcal{H}^{\vee m}\right) \rightarrow B\left(\mathcal{H}^{\vee n}\right)$ and some

$$
1-\epsilon_{m, n, d}=\frac{d[m]}{d[n+m]} \frac{\binom{m}{n}}{\binom{m+n}{n}} \geqslant 1-\frac{n(d+n)}{m+d}
$$

(5) Compare the norm of $\mathrm{MP}_{m \rightarrow n}(|\psi\rangle\langle\psi|)$ and $\operatorname{Tr}_{m \rightarrow n}(|\psi\rangle\langle\psi|)$ to show the quantum de-Finetti theorem.

