EXERCISES 12

Excercise 1 (Norms of block matrices). Let \mathcal{H} denote a complex Euclidean space. We will show that

$$\|\sum_{i,j=1}^{d} |i\rangle\langle j| \otimes X_{i,j}\|_{\infty} \leqslant d \max_{i,j} \|X_{i,j}\|_{\infty}.$$

for any operators $X_{i,j} \in B(\mathcal{H})$ for $i, j \in \{1, ..., d\}$. Follow the steps below:

(1) Recall that $||X||_{\infty} = \max_{v,w} |\langle v|X|w\rangle|$ where the maximum is over vectors $|v\rangle, |w\rangle \in \mathcal{H}$ satisfying $\langle v|v\rangle = \langle w|w\rangle = 1$. Use this to show that

$$\|\sum_{i,j=1}^d |i\rangle\langle j| \otimes X_{i,j}\|_{\infty} \leqslant \|\sum_{i,j=1}^d \|X_{i,j}\|_{\infty} |i\rangle\langle j|\|_{\infty}.$$

Hint: Note that vectors $|v\rangle \in \mathbb{C}^d \otimes \mathcal{H}$ can be written as $|v\rangle = \sum_{i=1}^d |i\rangle \otimes |v_i\rangle$ with $|v_i\rangle \in \mathcal{H}$ for each i.

(2) Use equivalence of the Schatten-p-norms to show that

$$\| \sum_{i,j=1}^{d} \| X_{i,j} \|_{\infty} |i\rangle\langle j| \|_{\infty} \leqslant \left(\sum_{i,j=1}^{d} \| X_{i,j} \|_{\infty}^{2} \right)^{1/2}.$$

(3) Finally, show that

$$\left(\sum_{i,j=1}^{d} \|X_{i,j}\|_{\infty}^{2}\right)^{1/2} \leqslant d \max_{i,j} \|X_{i,j}\|_{\infty}.$$

Excercise 2 (The diamond norm). For a linear map $L: B(\mathcal{H}_A) \to B(\mathcal{H}_B)$ we define

$$||L||_{\diamond} = \sup_{n \in \mathbb{N}} ||\mathrm{id}_n \otimes L||_{1 \to 1}.$$

(1) Use the Schmidt decomposition to show that

$$\|\mathrm{id}_n \otimes L\|_{1\to 1} \leqslant \|\mathrm{id}_{B(\mathcal{H}_A)} \otimes L\|_{1\to 1},$$

and conclude that $||L||_{\diamond} < \infty$. **Hint:** Remember the extreme points of the $||\cdot||_1$ -unit ball.

(2) Use duality of norms and Exercise 1 to show that

$$||L||_{\diamond} \leqslant \dim (\mathcal{H}_A) ||L||_{1\to 1}.$$

(3) Consider the transpose map $\vartheta_d: B(\mathbb{C}^d) \to B(\mathbb{C}^d)$ in the computational basis and show that

$$\|\vartheta_d\|_{\diamond} = d.$$

Note that this shows that the general upper bound on the diamond norm is sharp.

(4) Show that we have

$$||L_1 \otimes L_2||_{\diamond} \leqslant ||L_1||_{\diamond} ||L_2||_{\diamond},$$

for any pair of linear maps $L_1: B(\mathcal{H}_{A_1}) \to B(\mathcal{H}_{B_1})$ and $L_2: B(\mathcal{H}_{A_2}) \to B(\mathcal{H}_{B_2})$.

Excercise 3 (Bose-symmetry). Let \mathcal{H} be a complex Euclidean space and $N \in \mathbb{N}$. We will now prove two important facts about the Bose-symmetric operators and their relationship with the symmetric subspace of operators.

(1) Show that

$$B(\mathcal{H}^{\vee N}) = \operatorname{span}_{\mathbb{C}}\{|v\rangle\langle v|^{\otimes N}\},$$

and that

$$B\left(\mathcal{H}^{\vee N}\right)_{sa} = \operatorname{span}_{\mathbb{R}}\{|v\rangle\langle v|^{\otimes N}\}$$

Hint: Define $|v_{\alpha,\beta}\rangle = e^{i\alpha}|x\rangle + e^{i\beta}|y\rangle$ and find a function $f(\alpha,\beta)$ satisfying

$$|x\rangle\langle y|^{\otimes N} = \frac{1}{2\pi^2} \int_0^{2\pi} \int_0^{2\pi} f(\alpha, \beta) |v_{\alpha, \beta}\rangle\langle v_{\alpha, \beta}|^{\otimes n} d\alpha d\beta.$$

(2) Show that any quantum state $\rho \in D\left(\mathcal{H}^{\otimes N}\right) \cap B(\mathcal{H})^{\vee N}$ admits a purification $|\psi\rangle \in (\mathcal{H} \otimes \mathcal{H})^{\vee N}$. **Hint:** Use $|\psi\rangle = \text{vec}\left(\sqrt{\rho}\right)$ with an appropriate ordering of the tensor factors.

Excercise 4 (The de-Finetti theorem and its consequences). For $m \in \mathbb{N}$ consider some pure state $|\psi\rangle \in \mathcal{H}^{\vee m}$. We will show that for any $n \in \mathbb{N}$ satisfying $n \leqslant m$, there exists a quantum state

$$\sigma \in \operatorname{conv}\left(|v\rangle\langle v|^{\otimes n} : |v\rangle \in \mathcal{H}, \langle v|v\rangle = 1\right),$$

such that

$$\|\operatorname{Tr}_{m\to n}(|\psi\rangle\langle\psi|) - \sigma\|_1 \leqslant \frac{n(d+n)}{m+d},$$

where $d = \dim(\mathcal{H})$ and $\operatorname{Tr}_{m \to n}$ denotes the partial trace over any (m-n) of the m tensor factors. In the following, we use

$$d[k] = \binom{k+d-1}{k}.$$

Follow the steps below:

(1) Define the linear map $\operatorname{clone}_{n\to m}: B(\mathcal{H}^{\vee n}) \to B(\mathcal{H}^{\vee m})$ by

$$clone_{n\to m}(X) = \frac{d[n]}{d[m]} P_{sym}^m \left(X \otimes \mathbb{1}_{\mathcal{H}}^{\otimes (m-n)} \right) P_{sym}^m,$$

and the linear map $MP_{m\to n}: B(\mathcal{H}^{\vee m}) \to B(\mathcal{H}^{\vee n})$ by

$$\mathrm{MP}_{m\to n}\left(X\right) = d[m] \int_{\mathcal{U}(\mathcal{H})} \langle \phi_U^{\otimes m} | X | \phi_U^{\otimes m} \rangle |\phi_U\rangle \langle \phi_U|^{\otimes n} d\eta(U),$$

where $|\phi_U\rangle = U|0\rangle$ for any $U \in \mathcal{U}(\mathcal{H})$. Verify that these maps are quantum channels.

(2) Show that

$$\langle |b\rangle\langle b|^{\otimes n}, \mathrm{MP}_{m\to n}\left(|a\rangle\langle a|^{\otimes m}\right)\rangle_{HS} = \frac{d[m]}{d[m+n]} \sum_{s=0}^n \frac{\binom{m}{s}\binom{n}{s}}{\binom{n+m}{s}} |\langle a|b\rangle|^{2s},$$

for $|a\rangle, |b\rangle \in \mathcal{H}$ satisfying $\langle a|a\rangle = \langle b|b\rangle = 1$. **Hint:** Find a symmetric projection P_{sym}^{n+m} and write is as a sum involving the unitaries U_{σ} for $\sigma \in S_{n+m}$.

(3) Use the prvious subexercise to show the identity

$$\mathrm{MP}_{m \to n} = \frac{d[m]}{d[m+n]} \sum_{s=0}^n \frac{d[n]}{d[s]} \frac{\binom{m}{s} \binom{n}{s}}{\binom{m+n}{s}} \operatorname{clone}_{s \to n} \circ \mathrm{Tr}_{m \to s}.$$

(4) By splitting off the summand for s = n show that

$$MP_{m\to n} = (1 - \epsilon_{m,n,d}) \operatorname{Tr}_{m\to n} + \epsilon_{m,n,d} R,$$

for some quantum channel $R: B(\mathcal{H}^{\vee m}) \to B(\mathcal{H}^{\vee n})$ and some

$$1 - \epsilon_{m,n,d} = \frac{d[m]}{d[n+m]} \frac{\binom{m}{n}}{\binom{m+n}{n}} \ge 1 - \frac{n(d+n)}{m+d}.$$

(5) Compare the norm of $MP_{m\to n}\left(|\psi\rangle\langle\psi|\right)$ and $Tr_{m\to n}\left(|\psi\rangle\langle\psi|\right)$ to show the quantum de-Finetti theorem.