EXERCISES 1

1. Training

Excercise 1 (Classes of linear operators).

Consider the Euclidean space $\mathcal{H} = \mathbb{C}^2$. Which of the following operators in $B(\mathcal{H})$ (written as matrices in the computational basis) are normal, selfadjoint, positive, projections, and/or unitaries:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad B = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad D = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 3 \\ 3 & -2 \end{pmatrix} \quad F = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} \quad G = \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & i \\ i & 2 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Excercise 2 (The Kronecker product).

Compute the Kronecker product $X \otimes Y$ of

(1)
$$X = \begin{pmatrix} 1 & 2 \end{pmatrix}, Y = \begin{pmatrix} 3 & 4 \end{pmatrix}.$$
(2)
$$X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 3 & 4 \end{pmatrix}.$$
(3)

$$X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, Y = \begin{pmatrix} 5 & 6 \end{pmatrix}.$$

$$(4) X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, Y = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}.$$

(5)
$$X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, Y = \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{pmatrix}.$$

2. Understanding

Excercise 3 (The flip operator, \clubsuit). Find a matrix representation (in computational basis) of the linear operator $\mathbb{F}: \mathbb{C}^d \otimes \mathbb{C}^d \to \mathbb{C}^d \otimes \mathbb{C}^d$ such that

$$\mathbb{F}(|a\rangle \otimes |b\rangle) = |b\rangle \otimes |a\rangle,$$

for every $|a\rangle, |b\rangle \in \mathbb{C}^d$. For convenience you may identify $\mathbb{C}^d \otimes \mathbb{C}^d \simeq \mathbb{C}^{d^2}$ using the lexicographic ordering of the computational basis on $\mathbb{C}^d \otimes \mathbb{C}^d$, i.e., such that

$$|\mathbf{1}_2\rangle = |1\rangle \otimes |1\rangle$$

$$|\mathbf{2}_2\rangle = |1\rangle \otimes |2\rangle$$

$$|\mathbf{3}_2\rangle = |2\rangle \otimes |1\rangle$$

$$|\mathbf{4}_2\rangle = |2\rangle \otimes |2\rangle,$$

in the case d=2.

Excercise 4 (Identifying operators, \clubsuit). Show that for complex Euclidean spaces $\mathcal{H}_A, \mathcal{H}_B$ we have

$$B(\mathcal{H}_A) \otimes B(\mathcal{H}_B) \simeq B(\mathcal{H}_A \otimes \mathcal{H}_B).$$

Is it true that as vector spaces over \mathbb{R} we have

$$(1) B(\mathcal{H}_A)_{sa} \otimes B(\mathcal{H}_B)_{sa} \simeq B(\mathcal{H}_A \otimes \mathcal{H}_B)_{sa},$$

for complex Euclidean spaces \mathcal{H}_A , \mathcal{H}_B ? Is (1) true if \mathcal{H}_A and \mathcal{H}_B are real Euclidean spaces?

Excercise 5 (Characterizing positive operators, **).

Let $P \in B(\mathcal{H})$ denote a linear operator on the complex Euclidean space \mathcal{H} .

- (1) Show that the following are equivalent:
 - (a) P is selfadjoint and has non-negative eigenvalues.
 - (b) We have $\langle x|P|x\rangle \geqslant 0$ for every $|x\rangle \in \mathcal{H}$.
 - (c) There exists a positive operator $Q \in B(\mathcal{H})$ such that $P = Q^2$.
 - (d) There exists an operator $X \in B(\mathcal{H})$ such that $P = X^{\dagger}X$.
 - (e) There exists an operator $Y \in B(\mathcal{H}, \mathcal{H}')$ for some Euclidean space \mathcal{H}' such that $P = Y^{\dagger}Y$.
- (2) Show that the operator Q in 3. is unique. This operator is called the *positive* square root of P. We will write \sqrt{P} or $P^{1/2}$ to denote it.

Excercise 6 (The qubit, $\clubsuit \clubsuit$). How can we visualize quantum states on the complex Euclidean space $\mathcal{H} = \mathbb{C}^2$?

(1) Consider the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Show that $\{\mathbb{1}_2, \sigma_1, \sigma_2, \sigma_3\}$ is an orthogonal basis of the Hilbert-Schmidt inner product space $B(\mathcal{H})$ and that their real span is $B(\mathcal{H})_{sa}$.

(2) Show that we have

$$\left(\sum_{i=1}^{3} x_i \sigma_i\right)^* \left(\sum_{i=1}^{3} x_i \sigma_i\right) = \|x\|_2^2 \mathbb{1}_2,$$

for any $x \in \mathbb{R}^3$. Conclude that the matrix

$$\rho_x = \frac{1}{2} \mathbb{1}_2 + \frac{1}{2} \sum_{i=1}^3 x_i \sigma_i,$$

is a quantum state, i.e., positive and of unit trace, for any vector $x \in \mathbb{R}^3$ satisfying $||x||_2 \le 1$.

- (3) Show that every quantum state $\rho \in D(\mathbb{C}^2)$ can be written as $\rho = \rho_x$ for some $x \in \mathbb{R}^3$. Therefore, we can identify $D(\mathbb{C}^2)$ with the unit ball in the 2-norm. What are the pure states in this picture? What quantum state is at the center of the Bloch ball?
- (4) Argue that $D(\mathbb{C}^3)$ is not isomorphic to the unit ball for any norm.

Excercise 7 (SICs, $\clubsuit \clubsuit \clubsuit$). A symmetrical informationally-complete PVM (also known as a SIC POVM) on \mathbb{C}^d is a set of d^2 rank-1 projections

$$\{|\psi_1\rangle\langle\psi_1|,\ldots,|\psi_{d^2}\rangle\langle\psi_{d^2}|\}\subset\operatorname{Proj}\left(\mathbb{C}^d\right)$$

such that

$$|\langle \psi_i | \psi_j \rangle|^2 = \frac{d\delta_{ij} + 1}{d+1},$$

for any $i, j \in \{1, ..., d^2\}$. Construct a SIC POVM on \mathbb{C}^2 .