EXERCISES 1

1. Training

Excercise 1 (Classes of linear operators).
Consider the Euclidean space $\mathcal{H}=\mathbb{C}^{2}$. Which of the following operators in $B(\mathcal{H})$ (written as matrices in the computational basis) are normal, selfadjoint, positive, projections, and/or unitaries:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad C=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad D=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \\
& E=\left(\begin{array}{cc}
1 & 3 \\
3 & -2
\end{array}\right) \quad F=\left(\begin{array}{cc}
4 & 1 \\
1 & 2
\end{array}\right) \quad G=\left(\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 1
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad J=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
2 & i \\
i & 2
\end{array}\right) \\
& X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Excercise 2 (The Kronecker product).
Compute the Kronecker product $X \otimes Y$ of
(1)

$$
\begin{gathered}
X=\left(\begin{array}{ll}
1 & 2
\end{array}\right), Y=\left(\begin{array}{ll}
3 & 4
\end{array}\right) . \\
X=\binom{1}{2}, Y=\left(\begin{array}{ll}
3 & 4
\end{array}\right) .
\end{gathered}
$$

(2)
(3)

$$
X=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), Y=\left(\begin{array}{ll}
5 & 6
\end{array}\right)
$$

$$
X=\left(\begin{array}{ll}
1 & 2 \tag{4}\\
3 & 4
\end{array}\right), Y=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

$$
X=\left(\begin{array}{ll}
1 & 2 \tag{5}\\
3 & 4
\end{array}\right), Y=\left(\begin{array}{cc}
5 & 6 \\
7 & 8 \\
9 & 10
\end{array}\right)
$$

2. Understanding

Excercise 3 (The flip operator, Find a matrix representation (in computational basis) of the linear operator $\mathbb{F}: \mathbb{C}^{d} \otimes \mathbb{C}^{d} \rightarrow \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ such that

$$
\mathbb{F}(|a\rangle \otimes|b\rangle)=|b\rangle \otimes|a\rangle
$$

for every $|a\rangle,|b\rangle \in \mathbb{C}^{d}$. For convenience you may identify $\mathbb{C}^{d} \otimes \mathbb{C}^{d} \simeq \mathbb{C}^{d^{2}}$ using the lexicographic ordering of the computational basis on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, i.e., such that

$$
\begin{aligned}
& \left|\mathbf{1}_{2}\right\rangle=|1\rangle \otimes|1\rangle \\
& \left|\mathbf{2}_{2}\right\rangle=|1\rangle \otimes|2\rangle \\
& \left|\mathbf{3}_{2}\right\rangle=|2\rangle \otimes|1\rangle \\
& \left|\mathbf{4}_{2}\right\rangle=|2\rangle \otimes|2\rangle,
\end{aligned}
$$

in the case $d=2$.

Excercise 4 (Identifying operators, Show that for complex Euclidean spaces $\mathcal{H}_{A}, \mathcal{H}_{B}$ we have

$$
B\left(\mathcal{H}_{A}\right) \otimes B\left(\mathcal{H}_{B}\right) \simeq B\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)
$$

Is it true that as vector spaces over \mathbb{R} we have

$$
\begin{equation*}
B\left(\mathcal{H}_{A}\right)_{s a} \otimes B\left(\mathcal{H}_{B}\right)_{s a} \simeq B\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)_{s a} \tag{1}
\end{equation*}
$$

for complex Euclidean spaces $\mathcal{H}_{A}, \mathcal{H}_{B}$? Is (1) true if \mathcal{H}_{A} and \mathcal{H}_{B} are real Euclidean spaces?

Excercise 5 (Characterizing positive operators,
Let $P \in B(\mathcal{H})$ denote a linear operator on the complex Euclidean space \mathcal{H}.
(1) Show that the following are equivalent:
(a) P is selfadjoint and has non-negative eigenvalues.
(b) We have $\langle x| P|x\rangle \geqslant 0$ for every $|x\rangle \in \mathcal{H}$.
(c) There exists a positive operator $Q \in B(\mathcal{H})$ such that $P=Q^{2}$.
(d) There exists an operator $X \in B(\mathcal{H})$ such that $P=X^{\dagger} X$.
(e) There exists an operator $Y \in B\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ for some Euclidean space \mathcal{H}^{\prime} such that $P=Y^{\dagger} Y$.
(2) Show that the operator Q in 3 . is unique. This operator is called the positive square root of P. We will write \sqrt{P} or $P^{1 / 2}$ to denote it.
Excercise 6 (The qubit, How can we visualize quantum states on the complex Euclidean space $\mathcal{H}=\mathbb{C}^{2}$?
(1) Consider the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Show that $\left\{\mathbb{1}_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is an orthogonal basis of the Hilbert-Schmidt inner product space $B(\mathcal{H})$ and that their real span is $B(\mathcal{H})_{s a}$.
(2) Show that we have

$$
\left(\sum_{i=1}^{3} x_{i} \sigma_{i}\right)^{*}\left(\sum_{i=1}^{3} x_{i} \sigma_{i}\right)=\|x\|_{2}^{2} \mathbb{1}_{2},
$$

for any $x \in \mathbb{R}^{3}$. Conclude that the matrix

$$
\rho_{x}=\frac{1}{2} \mathbb{1}_{2}+\frac{1}{2} \sum_{i=1}^{3} x_{i} \sigma_{i},
$$

is a quantum state, i.e., positive and of unit trace, for any vector $x \in \mathbb{R}^{3}$ satisfying $\|x\|_{2} \leqslant 1$.
(3) Show that every quantum state $\rho \in D\left(\mathbb{C}^{2}\right)$ can be written as $\rho=\rho_{x}$ for some $x \in \mathbb{R}^{3}$. Therefore, we can identify $D\left(\mathbb{C}^{2}\right)$ with the unit ball in the 2 -norm. What are the pure states in this picture? What quantum state is at the center of the Bloch ball?
(4) Argue that $D\left(\mathbb{C}^{3}\right)$ is not isomorphic to the unit ball for any norm.

Excercise 7 (SICs, A symmetrical informationally-complete PVM (also known as a SIC POVM) on \mathbb{C}^{d} is a set of d^{2} rank-1 projections

$$
\left\{\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|, \ldots,\left|\psi_{d^{2}}\right\rangle\left\langle\psi_{d^{2}}\right|\right\} \subset \operatorname{Proj}\left(\mathbb{C}^{d}\right)
$$

such that

$$
\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|^{2}=\frac{d \delta_{i j}+1}{d+1}
$$

for any $i, j \in\left\{1, \ldots, d^{2}\right\}$. Construct a SIC POVM on \mathbb{C}^{2}.

