EXERCISES 2

1. TRAINING

Excercise 1 (Quantum states).

Which of the following matrices are quantum states in $D(\mathbb{C}^2 \otimes \mathbb{C}^2)$? (1)

(-)

(2)

(3)

$\rho_{AB} = \frac{1}{6}$	$\begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \end{array} $	$\begin{pmatrix} 0\\0\\0\\2 \end{pmatrix}.$
$\sigma_{AB} = \frac{1}{6}$	$\begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}$	$egin{array}{c} 0 \\ 1 \\ 2 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 2 \\ 1 \\ 0 \end{array}$	$\begin{pmatrix} 0\\0\\0\\2 \end{pmatrix}.$
$\tau_{AB} = \frac{1}{12}$	$\begin{pmatrix} 3\\0\\0\\0\\0 \end{pmatrix}$	${0 \\ 3 \\ 1 \\ 1 }$	${0 \\ 1 \\ 3 \\ 0 }$	$\begin{pmatrix} 0\\1\\0\\3 \end{pmatrix}.$

For any of the matrices above, compute both partial traces Tr_A and Tr_B .

Excercise 2 (Entanglement in pure states). Consider the Euclidean space $\mathcal{H} = \mathbb{C}^2$ and the following vectors in $\mathcal{H} \otimes \mathcal{H}$:

$$\begin{aligned} (1) & |\psi_1\rangle = \frac{1}{2} \operatorname{vec} \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) \\ (2) & |\psi_2\rangle = \frac{1}{2} \operatorname{vec} \left(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right) \\ (3) & |\psi_3\rangle = \frac{1}{2} \operatorname{vec} \left(\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \right) \\ (4) & |\psi_4\rangle = \frac{1}{2\sqrt{2}} \left((|1\rangle + |2\rangle) \otimes (|1\rangle + |2\rangle) - (|1\rangle - |2\rangle) \otimes (|1\rangle - |2\rangle) \right). \end{aligned}$$

Which of the corresponding pure states $|\psi_i\rangle\langle\psi_i|$ are entangled?

Excercise 3 (Monogamy of entanglement). Show that all purifications of a pure state $\rho_A = |\psi\rangle\langle\psi| \in D(\mathcal{H}_A)$ are of the form

$$\rho_{AE} = |\psi\rangle\!\langle\psi| \otimes |\phi\rangle\!\langle\phi|.$$

Now consider a composite quantum system 'AB' with tensor product state space $\mathcal{H}_A \otimes \mathcal{H}_B$ and assume that it is in a pure entangled quantum state $|\psi_{AB}\rangle\langle\psi_{AB}| \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$. Argue that there is no third quantum system that is entangled with the composite system 'AB'.

Excercise 4. Is the matrix transpose $\vartheta_d : B(\mathbb{C}^d) \to B(\mathbb{C}^d)$ given by $\vartheta_d(X) = X^T$ (in the computational basis) a quantum channel?

EXERCISES 2

2. Understanding

Excercise 5 (Examples of quantum channels, \clubsuit). Consider an isometry $V : \mathcal{H}_A \to \mathcal{H}_B \otimes \mathcal{H}_E$. Show that the map $T : B(\mathcal{H}_A) \to B(\mathcal{H}_B)$ given by

$$T(X) = \operatorname{Tr}_E \left[V X V^{\dagger} \right],$$

is a quantum channel.

Excercise 6 (Purifications and reduced density matrices, $||\psi||$). Consider a pure quantum state $||\psi_{AB}\rangle\langle\psi_{AB}| \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$ and denote by ρ_A and ρ_B its two marginals. Show the following statements:

- (1) The spectra of ρ_A and ρ_B are the same. What is the relationship between the eigenvalues of these operators and the Schmidt coefficients of $|\psi_{AB}\rangle$?
- (2) There exists an operator $X \in B(\mathcal{H}_A, \mathcal{H}_B)$ such that

$$\rho_A = X^T \overline{X}$$
 and $\rho_B = X X^{\dagger}$.

(3) There is a complex Euclidean space \mathcal{H}_E with $\dim(\mathcal{H}_E) = \operatorname{rk}(\rho_A)$ and a purification $|\phi_{AE}\rangle$ of ρ_A such that

$$|\psi_{AB}\rangle = (\mathbb{1}_{\mathcal{H}_A} \otimes V) |\phi_{AE}\rangle,$$

for some isometry $V : \mathcal{H}_E \to \mathcal{H}_B$. Note that such an isometry exists for any purification of ρ_A .

Excercise 7 (The realignment criterion,). For complex Euclidean spaces \mathcal{H}_A and \mathcal{H}_B we define the realignment map $R : B(\mathcal{H}_A \otimes \mathcal{H}_B) \to B(\mathcal{H}_B \otimes \mathcal{H}_B, \mathcal{H}_A \otimes \mathcal{H}_A)$ by

$$R\left(\left|i_{A}\right\rangle\!\!\left\langle j_{A}\right|\otimes\left|k_{B}\right\rangle\!\!\left\langle l_{B}\right|\right)=\left|i_{A}\right\rangle\!\!\left\langle k_{B}\right|\otimes\left|j_{A}\right\rangle\!\!\left\langle l_{B}\right|,$$

and extended linearily.

(1) Show that

$$R(X \otimes Y) = |\operatorname{vec}(X^T)\rangle \langle \operatorname{vec}(Y^T)|,$$

for any $X \in B(\mathcal{H}_A)$ and $Y \in B(\mathcal{H}_B)$.

(2) Assume that $\rho_{AB} \in D(\mathcal{H}_A \otimes \mathcal{H}_B)$ is a separable quantum state. Show that $\|R(\rho_{AB})\|_1 \leq 1.$

Here, $\|\cdot\|_1$ denotes the 1-norm, i.e., the norm given by

$$||A||_1 = \operatorname{Tr}\left[\sqrt{A^{\dagger}A}\right],$$

for any $A \in B(\mathcal{H})$, which also equals the sum of singular values of A.

(3) Show that the maximally entangled state $\omega_{\mathcal{H}}$ satisfies

$$\|R(\omega_{\mathcal{H}})\|_1 > 1,$$

showing that $\omega_{\mathcal{H}}$ is entangled.

Excercise 8 (Freedom in extensions, $\textcircled{}{} \textcircled{}{} \textcircled{}{} \textcircled{}{} \textcircled{}{} \textcircled{}{}}$). Let $\mathcal{H}_A, \mathcal{H}_E$ and $\mathcal{H}_{E'}$ denote complex Euclidean spaces. Consider a purification $|\psi_{AE}\rangle\langle\psi_{AE}| \in D(\mathcal{H}_A \otimes \mathcal{H}_E)$ of a quantum state $\rho_A \in D(\mathcal{H}_A)$ and a quantum state $\sigma_{AE'} \in D(\mathcal{H}_A \otimes \mathcal{H}_{E'})$ such that $\operatorname{Tr}_{E'}[\sigma_{AE'}] = \rho_A$. Show that there exists a quantum channel $S: B(\mathcal{H}_E) \to B(\mathcal{H}_{E'})$ such that

$$(\mathrm{id}_A \otimes S) (|\psi_{AE}\rangle \langle \psi_{AE}|) = \sigma_{AE'}$$

Hint: Start by reducing the problem to the case, where $\sigma_{AE'}$ is a pure state as well.