EXERCISES 3

1. Training

Excercise 1. Show that a linear map $T: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ is completely positive if and only if $\left(\mathrm{id}_{A} \otimes T\right): B\left(\mathcal{H}_{A} \otimes \mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$ is positive.

Excercise 2 (The amplitude damping channel). For $\gamma \in[0,1]$ we define the amplitude-damping channel $N_{\gamma}: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ by

$$
N_{\gamma}\left[\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right]=\left(\begin{array}{ll}
x_{11}+\gamma x_{22} & \sqrt{1-\gamma} x_{12} \\
\sqrt{1-\gamma} x_{21} & (1-\gamma) x_{22}
\end{array}\right) .
$$

(1) Compute the Choi matrix of N_{γ}. Is N_{γ} a quantum channel?
(2) Compute a Choi-Kraus representation of N_{γ}.
(3) Compute a Stinespring dilation of N_{γ}.

Using the criterion from Exercise 7, show that the amplitude-damping channel is extremal in the set of all quantum channels for every parameter $\gamma \in[0,1]$. Is this surprising?

Excercise 3. For a linear map $S: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ we define its adjoint S^{*} : $B\left(\mathcal{H}_{B}\right) \rightarrow B\left(\mathcal{H}_{A}\right)$ as the map satisfying

$$
\langle Y, S(X)\rangle_{H S}=\operatorname{Tr}\left[Y^{\dagger} S(X)\right]=\operatorname{Tr}\left[\left(S^{*}(Y)\right)^{\dagger} X\right]=\left\langle S^{*}(Y), X\right\rangle_{H S}
$$

Show that the dual of a quantum channel T is a unital completely positive map T^{*}, i.e., a completely positive map T^{*} satisfying $T^{*}\left(\mathbb{1}_{\mathcal{H}_{B}}\right)=\mathbb{1}_{\mathcal{H}_{A}}$. Can you express such a map T^{*} by taking the dual of the Stinespring dilation?

2. Understanding

Excercise 4 (The Weyl-Heisenberg system, The goal of this exercise is to construct the so-called Weyl-Heisenberg system, an orthogonal basis consisting of unitary operators for the Hilbert-Schmidt inner product space $B\left(\mathbb{C}^{d}\right)$. This system generalizes the Pauli matrices to higher dimensions.
(1) Consider the cyclic shift operator $S: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ given by

$$
S|i\rangle=|i+1\rangle,
$$

on the computational basis $\{|0\rangle, \ldots,|d-1\rangle\}$, and where addition is $\bmod d$. Show that the powers S^{k} for $k \in\{0, \ldots, d-1\}$ are orthogonal with respect to the Hilbert-Schmidt inner product $\langle X, Y\rangle=\operatorname{Tr}\left[X^{\dagger} Y\right]$.
(2) For the d th root of unity $\omega_{d}=\exp \left(\frac{2 \pi i}{d}\right)$ consider the diagonal matrix

$$
D=\left(\begin{array}{ccccc}
1 & & & & \\
& \omega_{d} & & & \\
& & \omega_{d}^{2} & & \\
& & & \ddots & \\
& & & & \omega_{d}^{d-1}
\end{array}\right) \in B\left(\mathbb{C}^{d}\right)
$$

Show that the powers D^{l} for $l \in\{0, \ldots, d-1\}$ are orthogonal with respect to the Hilbert-Schmidt inner product.
(3) Finally, define unitary operators $U_{k l}=S^{k} D^{l}$ and show that they form an orthogonal basis for the Hilbert-Schmidt inner product space $B\left(\mathbb{C}^{d}\right)$. What operators do you get for $d=2$?

Excercise 5 (The Moore-Penrose pseudo-inverse, Let \mathcal{H} denote a complex Euclidean space and consider an operator $X \in B(\mathcal{H})$. If $X=U S V^{\dagger}$ is the singular value decomposition of X, then we define the Moore-Penrose pseudo-inverse of X as

$$
X^{-1}=V S^{-1} U^{\dagger}
$$

where we set

$$
S^{-1}=\left(\begin{array}{cccccc}
\frac{1}{s_{1}} & & & & & \\
& \ddots & & & & \\
& & \frac{1}{s_{k}} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

for the non-zero singular values s_{1}, \ldots, s_{k}. Show the following:
(1) $X X^{-1} X=X$.
(2) $X^{-1} X X^{-1}=X^{-1}$.
(3) $X X^{-1}$ and $X^{-1} X$ are selfadjoint.

Furthermore, show that in the case where X is selfadjoint, then $X^{-1} X=X X^{-1}$ and this operator coincides with the orthogonal projection onto the range of X.

Excercise 6 (Ensemble representation theorem, For a complex Euclidean space of dimension $\operatorname{dim}(\mathcal{H})=d$ consider two sets $\left\{\left|\psi_{n}\right\rangle\right\}_{n=1}^{N} \subset \mathcal{H}$ and $\left\{\left|\phi_{k}\right\rangle\right\}_{k=1}^{K} \subset$ \mathcal{H} of vectors. We aim to show that

$$
\sum_{n=1}^{N}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|=\sum_{k=1}^{K}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| .
$$

if and only if there exists a unitary operator $U \in \mathcal{U}\left(\mathbb{C}^{N}\right)$ such that

$$
\left|\psi_{n}\right\rangle=\sum_{k=1}^{K} U_{n k}\left|\phi_{k}\right\rangle
$$

where the smaller set of vectors is extended by zero vectors. To show this result apply the following steps, or find your own proof:
(1) Show the easy direction.
(2) Consider a set of orthonormal vectors $\left\{\left|e_{k}\right\rangle\right\}_{k=1}^{K} \subset \mathcal{H}$ and let $\left\{\left|\psi_{n}\right\rangle\right\}_{n=1}^{N} \subset \mathcal{H}$ for $N \geqslant K$ satisfy

$$
\sum_{n=1}^{N}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|=\sum_{k=1}^{K}\left|e_{k}\right\rangle\left\langle e_{k}\right| .
$$

Show that

$$
\left\{\left(\left|e_{k}\right\rangle\right\}_{k=1}^{K}\right)^{\perp} \subseteq\left(\left\{\left|\psi_{n}\right\rangle\right\}_{n=1}^{N}\right)^{\perp}
$$

where \mathcal{S}^{\perp} denotes the orthogonal complement of a set $\mathcal{S} \subseteq \mathcal{H}$. Then, construct a unitary $U \in \mathcal{U}\left(\mathbb{C}^{N}\right)$ such that

$$
\sum_{n=1}^{N} U_{k n}\left|\psi_{n}\right\rangle=\left|e_{k}\right\rangle
$$

and

$$
\sum_{k=1}^{K} \overline{U_{k n}}\left|e_{k}\right\rangle=\left|\psi_{n}\right\rangle
$$

for each $n \in\{1, \ldots, N\}$ and $k \in\{1, \ldots, K\}$.
(3) Consider next the case, where $\left\{\left|e_{k}\right\rangle\right\}_{k=1}^{K} \subset \mathcal{H}$ are the eigenvectors corresponding to non-zero eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{K}\right\}$ of the operator

$$
A=\sum_{n=1}^{N}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| .
$$

Construct a unitary operator $U \in \mathcal{U}\left(\mathbb{C}^{N}\right)$ such that

$$
\sum_{n=1}^{N} U_{k n}\left|\psi_{n}\right\rangle=\sqrt{\lambda_{k}}\left|e_{k}\right\rangle,
$$

and

$$
\sum_{k=1}^{K} \overline{U_{k n}} \sqrt{\lambda_{k}}\left|e_{k}\right\rangle=\left|\psi_{n}\right\rangle,
$$

for each $n \in\{1, \ldots, N\}$ and $k \in\{1, \ldots, K\}$.
(4) Finally, combine the insights of the previous points to prove the theorem stated in the beginning of this exercise.
(5) Relate this result to the Kraus representation of a completely positive map and show the theorem from the lecture notes.

Excercise 7 (Extremal quantum channels, Let $T: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ denote a quantum channel with Choi-Kraus representation $T=\sum_{i=1}^{N} \operatorname{Ad}_{K_{i}}$ such that the set $\left\{K_{i}\right\}_{i=1}^{N} \subset B\left(\mathcal{H}_{A}, \mathcal{H}_{B}\right)$ is linearily independent. Show that the quantum channel T is extremal in the set of all quantum channels if and only if the set

$$
\begin{equation*}
\left\{K_{i}^{\dagger} K_{j}\right\}_{i, j=1}^{N} \tag{1}
\end{equation*}
$$

is linearily independent in $B\left(\mathcal{H}_{A}\right)$. For this follow, the steps below:
(1) Assume first that the set in (1) is linearily independent, and assume that

$$
T=(1-p) S_{1}+p S_{2}
$$

for some $p \in(0,1)$ and quantum channels $S_{1}, S_{2}: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$. Express the Kraus operators of S_{1} in terms of $\left\{K_{i}\right\}_{i=1}^{N}$ and show that $S_{1}=T$.
(2) Now assume that T is extremal and assume that

$$
\sum_{i, j=1}^{N} C_{i j} K_{i}^{\dagger} K_{j}=0
$$

for some $C \in B\left(\mathbb{C}^{N}\right)$. Show that this condition can be expressed as

$$
V^{\dagger}\left(\mathbb{1}_{\mathcal{H}_{B}} \otimes C\right) V=0
$$

where V is the isometry obtained by stacking the Kraus operators $\left\{K_{i}\right\}_{i}$ on top of each other.
(3) Show that without loss of generality the operator C can be assumed to be selfadjoint and such that its operator norm satsfies $\|C\| \leqslant 1$.
(4) Finally, construct two completely positive maps

$$
S_{ \pm}^{*}(X)=V^{\dagger}\left(X \otimes\left(\mathbb{1}_{\mathbb{C}^{N}} \pm C\right)\right) V
$$

and show that they are unital. Furthermore, show that

$$
T=\frac{1}{2}\left(S_{+}+S_{-}\right),
$$

implying that $T=S_{+}=S_{-}$. Conclude from this that $C=0$.

