
EXERCISES 3

1. Training

Excercise 1. Show that a linear map T : B(HA) → B(HB) is completely positive
if and only if (idA ⊗ T ) : B(HA ⊗HA) → B(HA ⊗HB) is positive.

Excercise 2 (The amplitude damping channel). For γ ∈ [0, 1] we define the
amplitude-damping channel Nγ : B(C2) → B(C2) by

Nγ

[(
x11 x12
x21 x22

)]
=

(
x11 + γx22

√
1− γx12√

1− γx21 (1− γ)x22

)
.

(1) Compute the Choi matrix of Nγ . Is Nγ a quantum channel?
(2) Compute a Choi-Kraus representation of Nγ .
(3) Compute a Stinespring dilation of Nγ .

Using the criterion from Exercise 7, show that the amplitude-damping channel is
extremal in the set of all quantum channels for every parameter γ ∈ [0, 1]. Is this
surprising?

Excercise 3. For a linear map S : B(HA) → B(HB) we define its adjoint S∗ :
B(HB) → B(HA) as the map satisfying

⟨Y, S(X)⟩HS = Tr
[
Y †S(X)

]
= Tr

[
(S∗(Y ))†X

]
= ⟨S∗(Y ), X⟩HS .

Show that the dual of a quantum channel T is a unital completely positive map
T ∗, i.e., a completely positive map T ∗ satisfying T ∗(1HB

) = 1HA
. Can you express

such a map T ∗ by taking the dual of the Stinespring dilation?

2. Understanding

Excercise 4 (The Weyl-Heisenberg system,K). The goal of this exercise is to
construct the so-called Weyl-Heisenberg system, an orthogonal basis consisting of
unitary operators for the Hilbert-Schmidt inner product space B(Cd). This system
generalizes the Pauli matrices to higher dimensions.

(1) Consider the cyclic shift operator S : Cd → Cd given by

S|i⟩ = |i+ 1⟩,

on the computational basis {|0⟩, . . . , |d− 1⟩}, and where addition is mod d.
Show that the powers Sk for k ∈ {0, . . . , d− 1} are orthogonal with respect
to the Hilbert-Schmidt inner product ⟨X,Y ⟩ = Tr

[
X†Y

]
.

(2) For the dth root of unity ωd = exp( 2πid ) consider the diagonal matrix

D =


1

ωd

ω2
d

. . .

ωd−1
d

 ∈ B(Cd).

Show that the powers Dl for l ∈ {0, . . . , d− 1} are orthogonal with respect
to the Hilbert-Schmidt inner product.
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(3) Finally, define unitary operators Ukl = SkDl and show that they form an
orthogonal basis for the Hilbert-Schmidt inner product space B(Cd). What
operators do you get for d = 2?

Excercise 5 (The Moore-Penrose pseudo-inverse, K). Let H denote a complex
Euclidean space and consider an operator X ∈ B(H). If X = USV † is the singular
value decomposition of X, then we define the Moore-Penrose pseudo-inverse of X
as

X−1 = V S−1U†,

where we set

S−1 =



1
s1

. . .
1
sk

0
. . .

0


,

for the non-zero singular values s1, . . . , sk. Show the following:

(1) XX−1X = X.
(2) X−1XX−1 = X−1.
(3) XX−1 and X−1X are selfadjoint.

Furthermore, show that in the case where X is selfadjoint, then X−1X = XX−1

and this operator coincides with the orthogonal projection onto the range of X.

Excercise 6 (Ensemble representation theorem,KK). For a complex Euclidean
space of dimension dim(H) = d consider two sets {|ψn⟩}Nn=1 ⊂ H and {|ϕk⟩}Kk=1 ⊂
H of vectors. We aim to show that

N∑
n=1

|ψn⟩⟨ψn| =
K∑

k=1

|ϕk⟩⟨ϕk|.

if and only if there exists a unitary operator U ∈ U
(
CN

)
such that

|ψn⟩ =
K∑

k=1

Unk|ϕk⟩,

where the smaller set of vectors is extended by zero vectors. To show this result
apply the following steps, or find your own proof:

(1) Show the easy direction.
(2) Consider a set of orthonormal vectors {|ek⟩}Kk=1 ⊂ H and let {|ψn⟩}Nn=1 ⊂ H

for N ⩾ K satisfy

N∑
n=1

|ψn⟩⟨ψn| =
K∑

k=1

|ek⟩⟨ek|.

Show that

{
(
|ek⟩}Kk=1

)⊥ ⊆
(
{|ψn⟩}Nn=1

)⊥
,

where S⊥ denotes the orthogonal complement of a set S ⊆ H. Then,
construct a unitary U ∈ U

(
CN

)
such that

N∑
n=1

Ukn|ψn⟩ = |ek⟩,
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and
K∑

k=1

Ukn|ek⟩ = |ψn⟩,

for each n ∈ {1, . . . , N} and k ∈ {1, . . . ,K}.
(3) Consider next the case, where {|ek⟩}Kk=1 ⊂ H are the eigenvectors corre-

sponding to non-zero eigenvalues {λ1, . . . , λK} of the operator

A =

N∑
n=1

|ψn⟩⟨ψn|.

Construct a unitary operator U ∈ U
(
CN

)
such that

N∑
n=1

Ukn|ψn⟩ =
√
λk|ek⟩,

and
K∑

k=1

Ukn

√
λk|ek⟩ = |ψn⟩,

for each n ∈ {1, . . . , N} and k ∈ {1, . . . ,K}.
(4) Finally, combine the insights of the previous points to prove the theorem

stated in the beginning of this exercise.
(5) Relate this result to the Kraus representation of a completely positive map

and show the theorem from the lecture notes.

Excercise 7 (Extremal quantum channels, KKK). Let T : B(HA) → B(HB) de-

note a quantum channel with Choi-Kraus representation T =
∑N

i=1 AdKi such that
the set {Ki}Ni=1 ⊂ B(HA,HB) is linearily independent. Show that the quantum
channel T is extremal in the set of all quantum channels if and only if the set

(1) {K†
iKj}Ni,j=1

is linearily independent in B(HA). For this follow, the steps below:

(1) Assume first that the set in (1) is linearily independent, and assume that

T = (1− p)S1 + pS2

for some p ∈ (0, 1) and quantum channels S1, S2 : B(HA) → B(HB).
Express the Kraus operators of S1 in terms of {Ki}Ni=1 and show that
S1 = T .

(2) Now assume that T is extremal and assume that

N∑
i,j=1

CijK
†
iKj = 0,

for some C ∈ B(CN ). Show that this condition can be expressed as

V † (1HB
⊗ C)V = 0,

where V is the isometry obtained by stacking the Kraus operators {Ki}i
on top of each other.

(3) Show that without loss of generality the operator C can be assumed to be
selfadjoint and such that its operator norm satsfies ∥C∥ ⩽ 1.

(4) Finally, construct two completely positive maps

S∗
±(X) = V † (X ⊗ (1CN ± C))V,
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and show that they are unital. Furthermore, show that

T =
1

2
(S+ + S−) ,

implying that T = S+ = S−. Conclude from this that C = 0.
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