
EXERCISES 4

Excercise 1. Check that µ : {1, 2} → B(C2)+ given by
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defines a POVM.

Excercise 2. A POVM µ : Σ → B(H)+ is called informationally complete if
every quantum state ρ ∈ D(H) can be uniquely determined from the probabilities
p(x) = Tr [µ(x)ρ]. Show that for an informationally complete POVM the outcome
alphabet has size |Σ| ⩾ d2.

1. Training

2. Understanding

Excercise 3 (Superdense coding, K). Consider two researchers named Alice and
Bob who each have a laboratory. Alice’s laboratory contains a quantum system
labelled ‘A’ and Bob’s laboratory contains a quantum system labelled ‘B’. Each
of these quantum systems is a qubit, i.e., their state space HA and HB are equal
to C2. Initially, ‘A’ and ‘B’ are in the maximally entangled pure state, i.e., their
state is given by ωAB = 1

2 |ΩAB⟩⟨ΩAB | ∈ D (HA ⊗HB) with

|ΩAB⟩ =
1√
2

2∑
i=1

|iA⟩ ⊗ |iB⟩.

Superdense coding is a protocol by which Alice can send 2 bits of classical infor-
mation by transferring a qubit to Bob. Proceed as follows:

(1) Consider the Pauli matrices written as

σ00 = 12, σ01 = σx, σ10 = σy, σ11 = σz.

Show that the vectors

|ψij⟩ = (12 ⊗ σij) |ΩAB⟩
define an orthonormal basis of HA ⊗HB . This orthonormal basis is called
the “Bell basis”.

(2) Find quantum channels Tij : B(HA) → B(HA) such that

Tr [|ψkl⟩⟨ψkl| (Tij ⊗ id2) (ωAB)] = δkiδlj .

for any k, l, i, j ∈ {0, 1}.
(3) Alice can use the quantum channels Tij to “encode” 2 bits (i, j). If Alice

transfers her qubit to Bob, then he can retrieve the message (i, j) by a
measurement. How does this work in detail?

Excercise 4 (Quantum teleportation, KK). Consider again the two researchers
Alice and Bob who each have a laboratory. Alice’s laboratory contains two quantum
systems labelled ‘A’ and ‘Ã’ and Bob’s laboratory contains a quantum system
labelled ‘B’. Each of these quantum systems is a qubit. Initially, ‘A’ and ‘B’ are in
a maximally entangled pure state (see previous exercise). Assume furthermore, that

the system ‘Ã’ is initially in some quantum state ρÃ ∈ D(HÃ) unknown to Alice
and Bob. Quantum teleportation is a protocol that lets Alice send this unknown
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state to Bob by performing a measurement and sending the measurement outcome
to Bob. Proceed as follows:

(1) Recall the Bell basis {|ψij⟩}ij ⊂ C2⊗C2 from the previous exercise. Com-
pute the probability of obtaining the outcome (k, l) ∈ {0, 1}2 when mea-

suring the subsystems ‘ÃA’ of the quantum state

σini = ρÃ ⊗ ωAB ,

using the von-Neumann measurement {|ψij⟩⟨ψij |}i,j defined via the Bell
basis.

(2) What is the post-measurement state σij
post after obtaining outcome (i, j)

in the measurement of (1)? Hint: You can either consider a destructive
measurement, or some instrument corresponding to the Bell measurement.
Does the choice of instrument matter? It is very helpful to draw a diagram
to see what is going on here!

(3) If Alice communicates the measurement outcome (i, j) of the Bell measure-
ment to Bob, what quantum channel can he apply so that his system is in
the final state ρÃ.

(4) How can we extend this protocol to quantum systems with dimension d > 2?

Excercise 5 (Quantum steering,KKK). Let ρA ∈ D (HA) denote a quantum state
with purification |ψAB⟩⟨ψAB | ∈ D (HA ⊗HB), and consider a decomposition ρA =∑N

n=1 pnρn with quantum states ρn ∈ D(HA) and a probability distribution p ∈
P ({1, . . . , N}). We aim to construct an instrument {Tn}Nn=1 with Tn : B(HB) →
B(HB) such that

TrB [(idA ⊗ Tn) (|ψAB⟩⟨ψAB |)] = pnρn,

for any n ∈ {1, . . . , N}. Follow the steps below:

(1) Argue that without loss of generality we can assume |ψAB⟩ = vec
(√
ρA

)
.

(2) Show that
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for any completely positive map T : B(HB) → B(HB) and any ρ ∈ D(HA).
(3) Find operators Kn ∈ B(HB) for every n ∈ {1, . . . , N} such that

√
ρA(K

†
nKn)

T√ρA = pnρn,

and such that
∑N

n=1K
†
nKn = 1HB

.

Hint: Consider first the case where ρA is invertible and use the Moore-
Penrose pseudoinverse for the general case.

(4) Construct an instrument {Tn}Nn=1 with Tn : B(HB) → B(HB) such that

TrB [(idA ⊗ Tn) (|ψAB⟩⟨ψAB |)] = pnρn,

for any n ∈ {1, . . . , N}.
(5) An interpretation of this result is that it is impossible to construct a so-

called mixed state analyzer, a hypothetical device that can distinguish dif-

ferent decompositions ρA =
∑N

n=1 pnρn and ρA =
∑M

m=1 qmσm of the same
quantum state. Can you explain why?
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