EXERCISES 4

Excercise 1. Check that yu : {1,2} — B(C?)* given by

L24vV2 V2 1/2-v2 -2
=1 (0 ) w1 (8 2h)
defines a POVM.

Excercise 2. A POVM p : ¥ — B(H)" is called informationally complete if
every quantum state p € D(H) can be uniquely determined from the probabilities
p(z) = Tr[u(x)p]. Show that for an informationally complete POVM the outcome
alphabet has size |3| > d2.

1. TRAINING
2. UNDERSTANDING

Excercise 3 (Superdense coding, #). Consider two researchers named Alice and
Bob who each have a laboratory. Alice’s laboratory contains a quantum system
labelled ‘A’ and Bob’s laboratory contains a quantum system labelled ‘B’. Each
of these quantum systems is a qubit, i.e., their state space H4 and Hp are equal
to C2. Initially, ‘A’ and ‘B’ are in the maximally entangled pure state, i.e., their
state is given by wap = %\QAB><QAB| € D(Hs ® Hp) with

2
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Superdense coding is a protocol by which Alice can send 2 bits of classical infor-
mation by transferring a qubit to Bob. Proceed as follows:

(1) Consider the Pauli matrices written as
ogo =12, 001 =04, 0O10=0y, O011=0.
Show that the vectors
thiz) = (L2 @ 045) [QaB)
define an orthonormal basis of H4 ® Hp. This orthonormal basis is called

the “Bell basis”.
(2) Find quantum channels T;; : B(H4) — B(Ha) such that

Tr [|Ye )| (Thj @ ida) (wap)] = 0kidy;.

for any k,l 4,7 € {0,1}.

(3) Alice can use the quantum channels T;; to “encode” 2 bits (4, 7). If Alice
transfers her qubit to Bob, then he can retrieve the message (i,7) by a
measurement. How does this work in detail?

Excercise 4 (Quantum teleportation, sed). Consider again the two researchers
Alice and Bob who each have a laboratory. Alice’s laboratory contains two quantum
systems labelled ‘A’ and ‘A’ and Bob’s laboratory contains a quantum system
labelled ‘B’. Each of these quantum systems is a qubit. Initially, ‘A’ and ‘B’ are in
a maximally entangled pure state (see previous exercise). Assume furthermore, that
the system ‘A’ is initially in some quantum state p i € D(H ;) unknown to Alice
and Bob. Quantum teleportation is a protocol that lets Alice send this unknown
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state to Bob by performing a measurement and sending the measurement outcome
to Bob. Proceed as follows:

(1) Recall the Bell basis {|1;;)}ij C C?® C? from the previous exercise. Com-
pute the probability of obtaining the outcome (k,1) € {0,1}* when mea-
suring the subsystems ‘AA’ of the quantum state

Oini = P; ®WAB,
using the von-Neumann measurement {|¢;;)ti;|}:; defined via the Bell
basis. -

(2) What is the post-measurement state o, , after obtaining outcome (4, 5)
in the measurement of (1)? Hint: You can either consider a destructive
measurement, or some instrument corresponding to the Bell measurement.
Does the choice of instrument matter? It is very helpful to draw a diagram
to see what is going on here!

(3) If Alice communicates the measurement outcome (7, j) of the Bell measure-
ment to Bob, what quantum channel can he apply so that his system is in
the final state p .

(4) How can we extend this protocol to quantum systems with dimension d > 27
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Excercise 5 (Quantum steering, sesesr). Let pg € D (H 4) denote a quantum state
with purification | apXwap| € D (Ha ® Hp), and consider a decomposition py =
25:1 Dnprn With quantum states p, € D(Ha) and a probability distribution p €
P ({1,...,N}). We aim to construct an instrument {7, }_, with T, : B(Hg) —
B(Hp) such that
Trp [(ldA & Tn) (|'¢AB><'¢AB|)] = PnPn,

for any n € {1,..., N}. Follow the steps below:

(1) Argue that without loss of generality we can assume [ ap) = vec (/pa).

(2) Show that

Trp [(ida @ T) (vee (yp) vee (vp)' )| = VA IT* (L))" v,

for any completely positive map T': B(Hp) — B(Hp) and any p € D(H,).
(3) Find operators K,, € B(Hp) for every n € {1,..., N} such that

VPA(K LK) \/pA = papa,
and such that Zgﬂ KIK, =14,

Hint: Consider first the case where p4 is invertible and use the Moore-
Penrose pseudoinverse for the general case.

(4) Construct an instrument {7, }N_; with T}, : B(Hp) — B(Hp) such that

Trp [(1dA & Tn) (|¢AB><¢AB|)] = PnPn,
for any n € {1,...,N}.

(5) An interpretation of this result is that it is impossible to construct a so-
called mized state analyzer, a hypothetical device that can distinguish dif-
ferent decompositions p4 = ZnN:1 DPnpn and py = 2%21 Gm0m of the same
quantum state. Can you explain why?
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