EXERCISES 4

Excercise 1. Check that $\mu: \{1,2\} \to B(\mathbb{C}^2)^+$ given by

$$\mu(1) = \frac{1}{4} \begin{pmatrix} 2 + \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 2 - \sqrt{2} \end{pmatrix}, \quad \mu(2) = \frac{1}{4} \begin{pmatrix} 2 - \sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & 2 + \sqrt{2} \end{pmatrix},$$

defines a POVM.

Excercise 2. A POVM $\mu: \Sigma \to B(\mathcal{H})^+$ is called *informationally complete* if every quantum state $\rho \in D(\mathcal{H})$ can be uniquely determined from the probabilities $p(x) = \text{Tr} [\mu(x)\rho]$. Show that for an informationally complete POVM the outcome alphabet has size $|\Sigma| \geqslant d^2$.

1. Training

2. Understanding

Excercise 3 (Superdense coding, \clubsuit). Consider two researchers named Alice and Bob who each have a laboratory. Alice's laboratory contains a quantum system labelled 'A' and Bob's laboratory contains a quantum system labelled 'B'. Each of these quantum systems is a qubit, i.e., their state space H_A and H_B are equal to \mathbb{C}^2 . Initially, 'A' and 'B' are in the maximally entangled pure state, i.e., their state is given by $\omega_{AB} = \frac{1}{2} |\Omega_{AB}\rangle\langle\Omega_{AB}| \in D(H_A \otimes H_B)$ with

$$|\Omega_{AB}\rangle = rac{1}{\sqrt{2}} \sum_{i=1}^{2} |i_A\rangle \otimes |i_B\rangle.$$

Superdense coding is a protocol by which Alice can send 2 bits of classical information by transferring a qubit to Bob. Proceed as follows:

(1) Consider the Pauli matrices written as

$$\sigma_{00} = \mathbb{1}_2, \quad \sigma_{01} = \sigma_x, \quad \sigma_{10} = \sigma_y, \quad \sigma_{11} = \sigma_z.$$

Show that the vectors

$$|\psi_{ij}\rangle = (\mathbb{1}_2 \otimes \sigma_{ij}) |\Omega_{AB}\rangle$$

define an orthonormal basis of $H_A \otimes H_B$. This orthonormal basis is called the "Bell basis".

(2) Find quantum channels $T_{ij}: B(H_A) \to B(H_A)$ such that

$$\operatorname{Tr}\left[\left|\psi_{kl}\right\rangle\!\left\langle\psi_{kl}\right|\left(T_{ij}\otimes\operatorname{id}_{2}\right)\left(\omega_{AB}\right)\right]=\delta_{ki}\delta_{lj}.$$

for any $k, l, i, j \in \{0, 1\}$.

(3) Alice can use the quantum channels T_{ij} to "encode" 2 bits (i, j). If Alice transfers her qubit to Bob, then he can retrieve the message (i, j) by a measurement. How does this work in detail?

Excercise 4 (Quantum teleportation, $\clubsuit \clubsuit$). Consider again the two researchers Alice and Bob who each have a laboratory. Alice's laboratory contains two quantum systems labelled 'A' and 'A' and Bob's laboratory contains a quantum system labelled 'B'. Each of these quantum systems is a qubit. Initially, 'A' and 'B' are in a maximally entangled pure state (see previous exercise). Assume furthermore, that the system 'A' is initially in some quantum state $\rho_{\tilde{A}} \in D(\mathcal{H}_{\tilde{A}})$ unknown to Alice and Bob. Quantum teleportation is a protocol that lets Alice send this unknown

2

state to Bob by performing a measurement and sending the measurement outcome to Bob. Proceed as follows:

(1) Recall the Bell basis $\{|\psi_{ij}\rangle\}_{ij}\subset\mathbb{C}^2\otimes\mathbb{C}^2$ from the previous exercise. Compute the probability of obtaining the outcome $(k,l) \in \{0,1\}^2$ when measuring the subsystems ' $\tilde{A}A$ ' of the quantum state

$$\sigma_{ini} = \rho_{\tilde{A}} \otimes \omega_{AB},$$

using the von-Neumann measurement $\{|\psi_{ij}\rangle\langle\psi_{ij}|\}_{i,j}$ defined via the Bell

- (2) What is the post-measurement state σ_{post}^{ij} after obtaining outcome (i,j)in the measurement of (1)? **Hint:** You can either consider a destructive measurement, or some instrument corresponding to the Bell measurement. Does the choice of instrument matter? It is very helpful to draw a diagram to see what is going on here!
- (3) If Alice communicates the measurement outcome (i, j) of the Bell measurement to Bob, what quantum channel can be apply so that his system is in the final state $\rho_{\tilde{A}}$.
- (4) How can we extend this protocol to quantum systems with dimension d > 2?

Excercise 5 (Quantum steering, $\clubsuit \clubsuit$). Let $\rho_A \in D(\mathcal{H}_A)$ denote a quantum state with purification $|\psi_{AB}\rangle\langle\psi_{AB}|\in D(\mathcal{H}_A\otimes\mathcal{H}_B)$, and consider a decomposition $\rho_A=$ $\sum_{n=1}^{N} p_n \rho_n$ with quantum states $\rho_n \in D(\mathcal{H}_A)$ and a probability distribution $p \in D(\mathcal{H}_A)$ $\mathcal{P}(\{1,\ldots,N\})$. We aim to construct an instrument $\{T_n\}_{n=1}^N$ with $T_n:B(\mathcal{H}_B)\to$ $B(\mathcal{H}_B)$ such that

$$\operatorname{Tr}_B\left[\left(\operatorname{id}_A\otimes T_n\right)\left(|\psi_{AB}\rangle\langle\psi_{AB}|\right)\right]=p_n\rho_n,$$

for any $n \in \{1, ..., N\}$. Follow the steps below:

- (1) Argue that without loss of generality we can assume $|\psi_{AB}\rangle = \text{vec}(\sqrt{\rho_A})$.
- (2) Show that

$$\operatorname{Tr}_{B}\left[\left(\operatorname{id}_{A}\otimes T\right)\left(\operatorname{vec}\left(\sqrt{\rho}\right)\operatorname{vec}\left(\sqrt{\rho}\right)^{\dagger}\right)\right]=\sqrt{\rho}\left[T^{*}\left(\mathbb{1}_{H_{B}}\right)\right]^{T}\sqrt{\rho},$$

for any completely positive map $T: B(H_B) \to B(H_B)$ and any $\rho \in D(\mathcal{H}_A)$.

(3) Find operators $K_n \in B(\mathcal{H}_B)$ for every $n \in \{1, ..., N\}$ such that

$$\sqrt{\rho_A}(K_n^{\dagger}K_n)^T\sqrt{\rho_A}=p_n\rho_n,$$

 $\sqrt{\rho_A}(K_n^\dag K_n)^T \sqrt{\rho_A} = p_n \rho_n,$ and such that $\sum_{n=1}^N K_n^\dag K_n = \mathbbm{1}_{\mathcal{H}_B}.$

Hint: Consider first the case where ρ_A is invertible and use the Moore-Penrose pseudoinverse for the general case.

(4) Construct an instrument $\{T_n\}_{n=1}^N$ with $T_n: B(\mathcal{H}_B) \to B(\mathcal{H}_B)$ such that $\operatorname{Tr}_{B}\left[\left(\operatorname{id}_{A}\otimes T_{n}\right)\left(|\psi_{AB}\rangle\langle\psi_{AB}|\right)\right]=p_{n}\rho_{n},$

for any $n \in \{1, \dots, N\}$.

(5) An interpretation of this result is that it is impossible to construct a socalled mixed state analyzer, a hypothetical device that can distinguish different decompositions $\rho_A = \sum_{n=1}^N p_n \rho_n$ and $\rho_A = \sum_{m=1}^M q_m \sigma_m$ of the same quantum state. Can you explain why?