EXERCISES 5

1. TRAINING

Excercise 1. Consider a convex function $f : \mathcal{V} \to \mathbb{R}$ on a real vector space \mathcal{V} , i.e., a function satisfying

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),$$

for every $x, y \in \mathcal{V}$ and every $\lambda \in [0, 1]$. For a convex body B show that

$$\sup_{x \in B} f(x) = \max_{x \in \text{Ext}(B)} f(x),$$

i.e., the supremum of f over B is attained in an extreme point of B.

Excercise 2. Consider the cone $C = \{(x, y, 0) \in \mathbb{R}^3 : x, y \ge 0\}$ in \mathbb{R}^3 . Compute the dual cone C^* . Is C (or C^*) pointed? Is C^* (or C) generating?

2. Understanding

Excercise 3 (Properties of cones, \clubsuit). Consider two closed cones $C_1, C_2 \subset \mathcal{V}$ in a real vector space \mathcal{V} .

- (1) Show that if $C_1 \subseteq C_2$, then $C_1^* \supseteq C_2^*$. (2) Show that $(C_1 \cap C_2)^* = \overline{(C_1^* \vee C_2^*)}$.

Excercise 4 (Classicality of the simplex cone, \clubsuit). Consider a proper cone $C \subset \mathcal{V}$ in a real vector space \mathcal{V} and the cone \mathbb{R}^N_+ entrywise positive vectors in \mathbb{R}^N . Show that

$$\mathbb{R}^N_+ \otimes_{\min} C = \mathbb{R}^N_+ \otimes_{\max} C.$$

Excercise 5 (Properties of tensor products,). Consider proper cones $C_A \subset \mathcal{V}_A$ and $C_B \subset \mathcal{V}_B$ belonging to real Euclidean spaces \mathcal{V}_A and \mathcal{V}_B , respectively.

- (1) Show that both $C_A \otimes_{\min} C_B$ and $C_A \otimes_{\max} C_B$ are proper cones in $\mathcal{V}_A \otimes \mathcal{V}_B$.
- (2) Show that $(C_A \otimes_{\min} C_B)^* = C_A^* \otimes_{\max} C_B^*$.
- (3) Show that

$$C_A \otimes_{\min} C_B \subseteq C_A \otimes_{\max} C_B.$$

Excercise 6 (Entanglement manipulation,). Let $\mathcal{H}_{A_1}, \mathcal{H}_{A_2}, \mathcal{H}_{B_1}, \mathcal{H}_{B_2}$ denote complex Euclidean spaces. A quantum channel

$$T: B(\mathcal{H}_{A_1} \otimes \mathcal{H}_{B_1}) \to B(\mathcal{H}_{A_2} \otimes H_{\mathcal{B}_2})$$

is called a *separable*¹ *quantum channel* if it can be written as

$$T = \sum_{n=1}^{N} S_A^{(n)} \otimes R_B^{(n)},$$

for completely positive maps $S_A^{(n)} : B(\mathcal{H}_{A_1}) \to B(\mathcal{H}_{A_2})$ and $R_B^{(n)} : B(\mathcal{H}_{B_1}) \to B(\mathcal{H}_{B_2})$. Let us denote the set of separable channels by

$$\operatorname{SepC}\left(\left(\mathcal{H}_{A_1},\mathcal{H}_{B_1}\right)\to\left(\mathcal{H}_{A_2},\mathcal{H}_{B_2}\right)\right).$$

(1) Show that $T(\rho_{AB}) \in \text{Sep}(\mathcal{H}_{A_2}, \mathcal{H}_{B_2})$ for any $\rho_{AB} \in \text{Sep}(\mathcal{H}_{A_1}, \mathcal{H}_{B_1})$ and any SepC (($\mathcal{H}_{A_1}, \mathcal{H}_{B_1}$) \rightarrow ($\mathcal{H}_{A_2}, \mathcal{H}_{B_2}$)). The separable states are preserved under separable operations!

¹Do not confuse this with separable quantum states!

EXERCISES 5

(2) Using the teleportation protocol, construct a separable quantum channel \overline{x}_{1} , \overline{x}_{2} ,

$$T \in \operatorname{SepC}\left((\mathbb{C}^2 \otimes \mathbb{C}^2, \mathbb{C}^2) \to (\mathbb{C}^2 \otimes \mathbb{C}^2, \mathbb{C}^2) \right),$$

such that

$$T(\rho \otimes \omega_{AB}) = \frac{1}{4}(\mathbb{1}_{\mathbb{C}^2} \otimes \mathbb{1}_{\mathbb{C}^2}) \otimes \rho \in D(\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2),$$

for any quantum state $\rho \in D(\mathbb{C}^2)$ and where $\omega_{AB} \in D(\mathbb{C}^2 \otimes \mathbb{C}^2)$ denotes the (normalized) maximally entangled state. How does this result generalize to dimensions d > 2.

(3) Show that any quantum states $\rho \in D(\mathbb{C}^d \otimes \mathbb{C}^d)$ can be written as

$$\rho = T\left(\omega_d\right),$$

for some separable quantum channel $T \in \text{SepC}((\mathbb{C}^d, \mathbb{C}^d) \to (\mathbb{C}^d, \mathbb{C}^d))$, and where $\omega_d \in D(\mathbb{C}^d \otimes \mathbb{C}^d)$ denotes the normalized maximally entangled state. This is why ω_d is called *maximally* entangled.

(4) Assume that an experimental physicist comes to you and claims that a certain quantum channel $T: B(\mathcal{H}_{A_1} \otimes \mathcal{H}_{B_1}) \to B(\mathcal{H}_{A_2} \otimes \mathcal{H}_{B_2})$ can be implemented by using two high-end quantum laboratories 'A' and 'B' that are far apart and assisted by classical messages sended back and forth between them. Convince her that the quantum channel T is a separable operation.

 $\mathbf{2}$