EXERCISES 5

1. Training

Excercise 1. Using the positive partial transpose criterion, show that the quantum state

$$
\rho_{A B}=\frac{1}{3}\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & -1 / 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 / 2 & 0 & 0 & 1 / 2
\end{array}\right) \in D\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)
$$

is separable.

2. Understanding

Excercise 2 (A modified singular value decomposition, Let $\mathrm{O}(3)$ denote the orthogonal group on \mathbb{R}^{3}, i.e., the matrices $U \in B\left(\mathbb{R}^{3}\right)$ such that $U^{T} U=\mathbb{1}_{\mathbb{R}^{3}}$ and $\mathrm{SO}(3)$ denote the group of 3 -dimensional rotation matrices, i.e., orthogonal matrices with determinant 1. Consider a matrix $M \in B\left(\mathbb{R}^{3}\right)$ (i.e., with real entries!). Show that there exist $R_{1}, R_{2} \in \mathrm{SO}(3)$ such that

$$
M=R_{1} D R_{2},
$$

with $D \in B\left(\mathbb{R}^{3}\right)$ diagonal and with either positive or negative entries.
(1) Show that there is a singular value decomposition $M=U S V$ with orthogonal matrices $U, V \in \mathrm{O}(3)$.
(2) Modify the orthogonal matrices in (1) prove the modified singular value decomposition from above.

Excercise 3 (Diagonalizing positive unital and trace-preserving qubit maps, We want to diagonalize positive linear maps $P: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ satisfying $P\left(\mathbb{1}_{\mathbb{C}^{2}}\right)=\mathbb{1}_{\mathbb{C}^{2}}$ and $\operatorname{Tr}[P(X)]=\operatorname{Tr}[X]$ for any $X \in B\left(\mathbb{C}^{2}\right)$. For this we recall (from a previous exercise) that there is a 1-to-1 correspondence between the quantum states $D\left(\mathbb{C}^{2}\right)$ and the Euclidean unit ball $B_{1}(0) \subset \mathbb{R}^{3}$ (the Bloch ball) given by

$$
\rho=\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+w \cdot \sigma\right) \in D\left(\mathbb{C}^{2}\right) \quad \longleftrightarrow \quad w \in B_{1}(0),
$$

where we use the shorthand

$$
w \cdot \sigma=\sum_{i=1}^{3} w_{i} \sigma_{i}
$$

with the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

We will sometimes write $\sigma_{0}=\mathbb{1}_{\mathbb{C}^{2}}$ and we recall that the real span of $\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is $B\left(\mathbb{C}^{2}\right)_{s a}$ and the complex span is $B\left(\mathbb{C}^{2}\right)$. Proceed as follows:
(1) Consider a positive map $P: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ satisfying $P\left(\mathbb{1}_{\mathbb{C}^{2}}\right)=\mathbb{1}_{\mathbb{C}^{2}}$ and $\operatorname{Tr}[P(X)]=\operatorname{Tr}[X]$ for any $X \in B\left(\mathbb{C}^{2}\right)$. Show that $M_{i j}=\frac{1}{2} \operatorname{Tr}\left[\sigma_{j} P\left(\sigma_{i}\right)\right] \in$ \mathbb{R} for every $i, j \in\{1,2,3\}$ and that

$$
P\left(\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+w \cdot \sigma\right)\right)=\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+(M w) \cdot \sigma\right),
$$

for any $w \in \mathbb{R}^{3}$, where we introduced $M \in B\left(\mathbb{R}^{3}\right)$ with entries $M_{i j}$.
(2) Consider the unitary

$$
U=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right)
$$

Find an $R \in \mathrm{SO}(3)$ such that

$$
\operatorname{Ad}_{U}\left(\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+w \cdot \sigma\right)\right)=\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+(R w) \cdot \sigma\right) .
$$

(3) Now, consider a general $R \in \mathrm{SO}(3)$, i.e., corresponding to a 3-dimensional rotation of the ball $B_{1}(0)$. Show that there exists a $U \in \mathcal{U}\left(\mathbb{C}^{2}\right)$ such that

$$
\operatorname{Ad}_{U}\left(\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+w \cdot \sigma\right)\right)=\frac{1}{2}\left(\mathbb{1}_{\mathbb{C}^{2}}+(R w) \cdot \sigma\right)
$$

Hint: Start with rotations around the coordinate axes. Then, use that a general $R \in \mathrm{SO}(3)$ can be written as the product three rotations around the coordinate axes with certain rotation angles (sometimes called Euler angles).
(4) Consider a positive map $P: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ satisfying $P\left(\mathbb{1}_{\mathbb{C}^{2}}\right)=\mathbb{1}_{\mathbb{C}^{2}}$ and $\operatorname{Tr}[P(X)]=\operatorname{Tr}[X]$ for any $X \in B\left(\mathbb{C}^{2}\right)$. Use Exercise 2 to show that there are unitary matrices $U_{1}, U_{2} \in \mathcal{U}\left(\mathbb{C}^{2}\right)$ satisfying

$$
\left(\operatorname{Ad}_{U_{1}} \circ P \circ \operatorname{Ad}_{U_{2}}\right)\left(\sigma_{i}\right)=\lambda_{i} \sigma_{i}
$$

for any $i \in\{0,1,2,3\}$ and some real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ and $\lambda_{0}=1$.
Excercise 4 (Visualizing positive maps, For $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}^{3}$, consider the trace-preserving map $P_{\lambda}: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ such that $P_{\lambda}\left(\mathbb{1}_{\mathbb{C}^{2}}\right)=\mathbb{1}_{\mathbb{C}^{2}}$ and

$$
P_{\lambda}\left(\sigma_{i}\right)=\lambda_{i} \sigma_{i}
$$

for $i \in\{1,2,3\}$.
(1) For which $\lambda \in \mathbb{R}^{3}$ is P_{λ} positive? Visualize this set.
(2) For which $\lambda \in \mathbb{R}^{3}$ is P_{λ} completely positive? Visualize this set.

Hint: Compute the Choi-Jamiolkowski operator of P_{λ}. Use that $\sigma_{i} \otimes \sigma_{i}$ and $\sigma_{j} \otimes \sigma_{j}$ commute and are simultaneously diagonalized by the Bell basis.
(3) For which $\lambda \in \mathbb{R}^{3}$ is $P_{\lambda}=\vartheta \circ T$ for the transpose $\vartheta: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ and a completely positive map $T: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$? Visualize this set.
(4) Using your visualizations and Exercise 3, show that any positive map P : $B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ satisfying $P\left(\mathbb{1}_{\mathbb{C}^{2}}\right)=\mathbb{1}_{\mathbb{C}^{2}}$ and $\operatorname{Tr}[P(X)]=\operatorname{Tr}[X]$ for any $X \in B\left(\mathbb{C}^{2}\right)$ can be written as

$$
P=T_{1}+\vartheta \circ T_{2},
$$

for completely positive maps $T_{1}, T_{2}: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ and the transpose $\operatorname{map} \vartheta: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$.

