EXERCISES 16

Excercise 1 (Channels with vanishing classical capacity). Let T : B(Ha) —
B(Hp) denote a quantum channel. Show that C(T') = 0 if and only if T is constant,
i.e., there exists a quantum state o € D(Hp) such that T(X) = Tr [X] 0.

Excercise 2. Consider the depolarizing channel D, : B(C?) — B(C?) with pa-
rameter A € [0,1] given by

DA(X) = ATe [X] 22 + (1 - X)X,

We want to evaluate x (D), which can be shown to be equal to the classical capacity
of the depolarizing channel C(D)).

(1) Show that Dy o Ad,, = Ad,, oD, for any Pauli matrix o;.
(2) Consider an ensemble {p(z),p,} with p € P(X) and p, € D(C?). Show
that
X ({{p(), Dx(p2)}}) < x ({{4(,4), Dx(0w,:)}})
where ¢(z,1) = p(z)/4 and 0, ; = Ady, (ps)-
(3) Use
1o 1
“NTAd, (X)) = Tr[X] -2
Y 00 =
to show that
Dy)=1- in H(D .
X(D») i (Dx(p))
(4) Verify that min,cp(c2y H (Da(p)) is attained in any pure quantum state
leading to the formula

X(D,\):1+glog (;‘) + (;+(1/\)> log <;\+(1)\)).

(5) Think about how this result generalizes to d > 3.

Excercise 3 (Entanglement breaking channels). A quantum channel T': B(H4) —
B(H ) is called entanglement breaking if its normalized Choi operator is a separable
quantum state.

(1) Show that a quantum channel T': B(H ) — B(Hp) is entanglement break-
ing if and only if it can be written as

N
T(X) =) Tr[A;X]B;,
=1

for some N € N and positive semidefinite operators A; € B(Ha)" and
B; € B(HB)+.

(2) Show that a quantum channel T': B(H ) — B(Hp) is entanglement break-
ing if and only if it admits a Kraus decomposition with rank-1 Kraus op-
erators.

(3) Show that a quantum channel T' : B(Ha) — B(Hp) is entanglement
breaking if and only if (idg ® T)(pga) is separable for any quantum state
pEA € D(HE ® Ha) for any complex Euclidean space Hg.
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Excercise 4 (Capacity of entanglement breaking channels). Let T : B(H4) —
B(Hp) denote an entanglement breaking channel (see previous exercise). We will
show that

X(T'®S) =x(T) + x(9),

for any quantum channel S : B(H¢) — B(Hp). By the HSW-theorem this implies
that the classical capacity of T' equals the Holevo-information, i.e., C(T) = x(T).

(1)

(2)

(4)

()

Consider ensembles {p(z), pz}zes, and {q(y),oy}yex, and form the en-
semble {p(x)q(y), pr ® 0y} (z,y)ex,xx,- Use this ensemble to show that
X(T'®8) = x(T) + x(5).

To show the other direction, consider an ensemble {p(z), ps }rex With p, €
D(Ha ® Hc). Show that for every x € X there are pure states |byy )(bgy| €
D(Hp) and |cgy)cay| € D(He) (not necessarily orthogonal!) and a proba-
bility distribution ¢ such that

(T ®ide)(pa) = ZQ(zzy)‘bxyxbxy‘ ® [eayNCayl-
Yy
For x € ¥ consider the quantum state

oap =3 4@, ) [Nyl @ [bayKbay| © S (JeayNeay])

and compute the reduced quantum states Ug%, 01(4"”])3, 0](;).

Use strong-subadditivity of the von-Neumann entropy to show that
H(ogp) > H(oGhp) — H(olp) + H(og).

Use the previous inequality to show that

x ({p(@), (T @ S)(p)}) < x ({p(2), T(Tre [p2])}) + x {p(2)a(z,y), S(|cayNeayl)})

and conclude that x(T' ® S) < x(T') + x(5).



