
EXERCISES 16

Excercise 1 (Channels with vanishing classical capacity). Let T : B(HA) →
B(HB) denote a quantum channel. Show that C(T ) = 0 if and only if T is constant,
i.e., there exists a quantum state σ ∈ D(HB) such that T (X) = Tr [X]σ.

Excercise 2. Consider the depolarizing channel Dλ : B(C2) → B(C2) with pa-
rameter λ ∈ [0, 1] given by

Dλ(X) = λTr [X]
12

2
+ (1− λ)X.

We want to evaluate χ(Dλ), which can be shown to be equal to the classical capacity
of the depolarizing channel C(Dλ).

(1) Show that Dλ ◦Adσi
= Adσi

◦Dλ for any Pauli matrix σi.
(2) Consider an ensemble {p(x), ρx} with p ∈ P(Σ) and ρx ∈ D(C2). Show

that

χ ({{p(x), Dλ(ρx)}}) ⩽ χ ({{q(x, i), Dλ(σx,i)}}) ,
where q(x, i) = p(x)/4 and σx,i = Adσi

(ρx).
(3) Use

1

4

4∑
i=1

Adσi(X) = Tr [X]
12

2
,

to show that

χ(Dλ) = 1− min
ρ∈D(C2)

H (Dλ(ρ)) .

(4) Verify that minρ∈D(C2) H (Dλ(ρ)) is attained in any pure quantum state
leading to the formula

χ(Dλ) = 1 +
λ

2
log

(
λ

2

)
+

(
λ

2
+ (1− λ)

)
log

(
λ

2
+ (1− λ)

)
.

(5) Think about how this result generalizes to d ⩾ 3.

Excercise 3 (Entanglement breaking channels). A quantum channel T : B(HA) →
B(HB) is called entanglement breaking if its normalized Choi operator is a separable
quantum state.

(1) Show that a quantum channel T : B(HA) → B(HB) is entanglement break-
ing if and only if it can be written as

T (X) =

N∑
i=1

Tr [AiX]Bi,

for some N ∈ N and positive semidefinite operators Ai ∈ B(HA)
+ and

Bi ∈ B(HB)
+.

(2) Show that a quantum channel T : B(HA) → B(HB) is entanglement break-
ing if and only if it admits a Kraus decomposition with rank-1 Kraus op-
erators.

(3) Show that a quantum channel T : B(HA) → B(HB) is entanglement
breaking if and only if (idE ⊗ T )(ρEA) is separable for any quantum state
ρEA ∈ D(HE ⊗HA) for any complex Euclidean space HE .
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2 EXERCISES 16

Excercise 4 (Capacity of entanglement breaking channels). Let T : B(HA) →
B(HB) denote an entanglement breaking channel (see previous exercise). We will
show that

χ(T ⊗ S) = χ(T ) + χ(S),

for any quantum channel S : B(HC) → B(HD). By the HSW-theorem this implies
that the classical capacity of T equals the Holevo-information, i.e., C(T ) = χ(T ).

(1) Consider ensembles {p(x), ρx}x∈Σ1 and {q(y), σy}y∈Σ2 and form the en-
semble {p(x)q(y), ρx ⊗ σy}(x,y)∈Σ1×Σ2

. Use this ensemble to show that
χ(T ⊗ S) ⩾ χ(T ) + χ(S).

(2) To show the other direction, consider an ensemble {p(x), ρx}x∈Σ with ρx ∈
D(HA ⊗HC). Show that for every x ∈ Σ there are pure states |bxy⟩⟨bxy| ∈
D(HB) and |cxy⟩⟨cxy| ∈ D(HC) (not necessarily orthogonal!) and a proba-
bility distribution q such that

(T ⊗ idC)(ρx) =
∑
y

q(x, y)|bxy⟩⟨bxy| ⊗ |cxy⟩⟨cxy|.

(3) For x ∈ Σ consider the quantum state

σ
(x)
ABD =

∑
y

q(x, y)|y⟩⟨y|A ⊗ |bxy⟩⟨bxy| ⊗ S (|cxy⟩⟨cxy|) ,

and compute the reduced quantum states σ
(x)
BD, σ

(x)
AB , σ

(x)
B .

(4) Use strong-subadditivity of the von-Neumann entropy to show that

H(σ
(x)
BD) ⩾ H(σ

(x)
ABD)−H(σ

(x)
AB) +H(σ

(x)
B ).

(5) Use the previous inequality to show that

χ ({p(x), (T ⊗ S)(ρx)}) ⩽ χ ({p(x), T (TrC [ρx])}) + χ ({p(x)q(x, y), S(|cxy⟩⟨cxy|)}) ,
and conclude that χ(T ⊗ S) ⩽ χ(T ) + χ(S).


