EXERCISES 16

Excercise 1 (Channels with vanishing classical capacity). Let $T: B\left(\mathcal{H}_{A}\right) \rightarrow$ $B\left(\mathcal{H}_{B}\right)$ denote a quantum channel. Show that $C(T)=0$ if and only if T is constant, i.e., there exists a quantum state $\sigma \in D\left(\mathcal{H}_{B}\right)$ such that $T(X)=\operatorname{Tr}[X] \sigma$.

Excercise 2. Consider the depolarizing channel $D_{\lambda}: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ with parameter $\lambda \in[0,1]$ given by

$$
D_{\lambda}(X)=\lambda \operatorname{Tr}[X] \frac{\mathbb{1}_{2}}{2}+(1-\lambda) X
$$

We want to evaluate $\chi\left(D_{\lambda}\right)$, which can be shown to be equal to the classical capacity of the depolarizing channel $C\left(D_{\lambda}\right)$.
(1) Show that $D_{\lambda} \circ \operatorname{Ad}_{\sigma_{i}}=\operatorname{Ad}_{\sigma_{i}} \circ D_{\lambda}$ for any Pauli matrix σ_{i}.
(2) Consider an ensemble $\left\{p(x), \rho_{x}\right\}$ with $p \in \mathcal{P}(\Sigma)$ and $\rho_{x} \in D\left(\mathbb{C}^{2}\right)$. Show that

$$
\chi\left(\left\{\left\{p(x), D_{\lambda}\left(\rho_{x}\right)\right\}\right\}\right) \leqslant \chi\left(\left\{\left\{q(x, i), D_{\lambda}\left(\sigma_{x, i}\right)\right\}\right\}\right),
$$

where $q(x, i)=p(x) / 4$ and $\sigma_{x, i}=\operatorname{Ad}_{\sigma_{i}}\left(\rho_{x}\right)$.
(3) Use

$$
\frac{1}{4} \sum_{i=1}^{4} \operatorname{Ad}_{\sigma_{i}}(X)=\operatorname{Tr}[X] \frac{\mathbb{1}_{2}}{2}
$$

to show that

$$
\chi\left(D_{\lambda}\right)=1-\min _{\rho \in D\left(\mathbb{C}^{2}\right)} H\left(D_{\lambda}(\rho)\right) .
$$

(4) Verify that $\min _{\rho \in D\left(\mathbb{C}^{2}\right)} H\left(D_{\lambda}(\rho)\right)$ is attained in any pure quantum state leading to the formula

$$
\chi\left(D_{\lambda}\right)=1+\frac{\lambda}{2} \log \left(\frac{\lambda}{2}\right)+\left(\frac{\lambda}{2}+(1-\lambda)\right) \log \left(\frac{\lambda}{2}+(1-\lambda)\right) .
$$

(5) Think about how this result generalizes to $d \geqslant 3$.

Excercise 3 (Entanglement breaking channels). A quantum channel $T: B\left(\mathcal{H}_{A}\right) \rightarrow$ $B\left(\mathcal{H}_{B}\right)$ is called entanglement breaking if its normalized Choi operator is a separable quantum state.
(1) Show that a quantum channel $T: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ is entanglement breaking if and only if it can be written as

$$
T(X)=\sum_{i=1}^{N} \operatorname{Tr}\left[A_{i} X\right] B_{i}
$$

for some $N \in \mathbb{N}$ and positive semidefinite operators $A_{i} \in B\left(\mathcal{H}_{A}\right)^{+}$and $B_{i} \in B\left(\mathcal{H}_{B}\right)^{+}$.
(2) Show that a quantum channel $T: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ is entanglement breaking if and only if it admits a Kraus decomposition with rank-1 Kraus operators.
(3) Show that a quantum channel $T: B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{B}\right)$ is entanglement breaking if and only if $\left(\operatorname{id}_{E} \otimes T\right)\left(\rho_{E A}\right)$ is separable for any quantum state $\rho_{E A} \in D\left(\mathcal{H}_{E} \otimes \mathcal{H}_{A}\right)$ for any complex Euclidean space \mathcal{H}_{E}.

Excercise 4 (Capacity of entanglement breaking channels). Let $T: B\left(\mathcal{H}_{A}\right) \rightarrow$ $B\left(\mathcal{H}_{B}\right)$ denote an entanglement breaking channel (see previous exercise). We will show that

$$
\chi(T \otimes S)=\chi(T)+\chi(S)
$$

for any quantum channel $S: B\left(\mathcal{H}_{C}\right) \rightarrow B\left(\mathcal{H}_{D}\right)$. By the HSW-theorem this implies that the classical capacity of T equals the Holevo-information, i.e., $C(T)=\chi(T)$.
(1) Consider ensembles $\left\{p(x), \rho_{x}\right\}_{x \in \Sigma_{1}}$ and $\left\{q(y), \sigma_{y}\right\}_{y \in \Sigma_{2}}$ and form the ensemble $\left\{p(x) q(y), \rho_{x} \otimes \sigma_{y}\right\}_{(x, y) \in \Sigma_{1} \times \Sigma_{2}}$. Use this ensemble to show that $\chi(T \otimes S) \geqslant \chi(T)+\chi(S)$.
(2) To show the other direction, consider an ensemble $\left\{p(x), \rho_{x}\right\}_{x \in \Sigma}$ with $\rho_{x} \in$ $D\left(\mathcal{H}_{A} \otimes \mathcal{H}_{C}\right)$. Show that for every $x \in \Sigma$ there are pure states $\left|b_{x y}\right\rangle\left\langle b_{x y}\right| \in$ $D\left(\mathcal{H}_{B}\right)$ and $\left|c_{x y}\right\rangle\left\langle c_{x y}\right| \in D\left(\mathcal{H}_{C}\right)$ (not necessarily orthogonal!) and a probability distribution q such that

$$
\left(T \otimes \operatorname{id}_{C}\right)\left(\rho_{x}\right)=\sum_{y} q(x, y)\left|b_{x y}\right\rangle\left\langle b_{x y}\right| \otimes\left|c_{x y}\right\rangle\left\langle c_{x y}\right| .
$$

(3) For $x \in \Sigma$ consider the quantum state

$$
\sigma_{A B D}^{(x)}=\sum_{y} q(x, y)|y\rangle\left\langle\left. y\right|_{A} \otimes \mid b_{x y}\right\rangle\left\langle b_{x y}\right| \otimes S\left(\left|c_{x y}\right\rangle\left\langle c_{x y}\right|\right),
$$

and compute the reduced quantum states $\sigma_{B D}^{(x)}, \sigma_{A B}^{(x)}, \sigma_{B}^{(x)}$.
(4) Use strong-subadditivity of the von-Neumann entropy to show that

$$
H\left(\sigma_{B D}^{(x)}\right) \geqslant H\left(\sigma_{A B D}^{(x)}\right)-H\left(\sigma_{A B}^{(x)}\right)+H\left(\sigma_{B}^{(x)}\right)
$$

(5) Use the previous inequality to show that
$\chi\left(\left\{p(x),(T \otimes S)\left(\rho_{x}\right)\right\}\right) \leqslant \chi\left(\left\{p(x), T\left(\operatorname{Tr}_{C}\left[\rho_{x}\right]\right)\right\}\right)+\chi\left(\left\{p(x) q(x, y), S\left(\left|c_{x y}\right\rangle\left\langle c_{x y}\right|\right)\right\}\right)$, and conclude that $\chi(T \otimes S) \leqslant \chi(T)+\chi(S)$.

