UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT 4430 - Quantum information theory (Mock exam)
Day of examination: Whenever
Examination hours: $\quad \mathrm{T}-\mathrm{T}+4 \mathrm{~h}$
This problem set consists of 8 pages.
Appendices:
None
Permitted aids: none.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: The exam consists of 10 subexercises which all give maximally 10 points. To get a point for a subexercise it is expected that you give an explanation of your solution.

Problem 1

Consider the linear map $T: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ given by

$$
T\left(\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\right)=\left(\begin{array}{cc}
\frac{1}{3} x_{1}+\frac{2}{3} x_{4} & \frac{1}{6} x_{2} \\
\frac{1}{6} x_{3} & \frac{1}{3} x_{4}+\frac{2}{3} x_{1}
\end{array}\right)
$$

1a
Show that T is a quantum channel.
Solution: Compute the Choi operator

$$
C_{T}=\left(\begin{array}{cccc}
\frac{1}{3} & 0 & 0 & \frac{1}{6} \\
0 & \frac{2}{3} & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 \\
\frac{1}{6} & 0 & 0 & \frac{1}{3}
\end{array}\right) .
$$

This operator is positive semidefinite, since it is selfadjoint and it has eigenvalues $2 / 3,1 / 2$ and $1 / 6$. Finally, T is trace-preserving since
$\operatorname{Tr}\left[T\left(\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)\right)\right]=\left(\frac{1}{3} x_{1}+\frac{2}{3} x_{4}\right)+\left(\frac{1}{3} x_{4}+\frac{2}{3} x_{1}\right)=x_{1}+x_{4}=\operatorname{Tr}\left(\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)\right)$.
1b
Compute a Kraus decomposition for T.

Solution: The eigenvalue $\lambda_{1}=2 / 3$ has multiplicity 2 and two orthogonal eigenvectors for this eigenvalue are

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \text { and } v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) .
$$

An eigenvector for the eigenvalue $\lambda_{2}=1 / 2$ is

$$
v_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

and an eigenvector for the eigenvalue $\lambda_{3}=1 / 6$ is

$$
v_{4}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

Using the inverse vectorization and multiplying by the square root of the corresponding eigenvalue gives the Kraus operators
$K_{1}=\left(\begin{array}{cc}0 & \sqrt{2 / 3} \\ 0 & 0\end{array}\right), K_{2}=\left(\begin{array}{cc}0 & 0 \\ \sqrt{2 / 3} & 0\end{array}\right), K_{3}=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), K_{4}=\frac{1}{\sqrt{12}}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
With those operators we have

$$
T(X)=K_{1} X K_{1}^{\dagger}+K_{2} X K_{2}^{\dagger}+K_{3} X K_{3}^{\dagger}+K_{4} X K_{4}^{\dagger}
$$

1c

Compute a Stinespring dilation of T.
Solution: By "stacking" the Kraus operators we find a Stinespring isometry $V: \mathbb{C}^{2} \rightarrow \mathbb{C}^{8}$ by

$$
V=\left(\begin{array}{l}
K_{1} \\
K_{2} \\
K_{3} \\
K_{4}
\end{array}\right)=\left(\begin{array}{cc}
0 & \sqrt{2 / 3} \\
0 & 0 \\
0 & 0 \\
\sqrt{2 / 3} & 0 \\
1 / 2 & 0 \\
0 & 1 / 2 \\
1 / \sqrt{12} & 0 \\
0 & -1 / \sqrt{12}
\end{array}\right)
$$

We have the Stinespring dilation

$$
T(X)=\operatorname{Tr}_{E}\left[V X V^{\dagger}\right]
$$

where $\mathbb{C}^{8}=\mathbb{C}^{2} \otimes \mathbb{C}^{4}$ and E refers to the 4-dimensional tensor factor (in our case this is the sum of the 2×2 diagonal blocks of $\left.V X V^{\dagger}\right)$.
(Continued on page 3.)

1d

Is the quantum channel T entanglement breaking?
Solution: Yes, it is! Since T is a unital qubit channel it is enough to check that $\vartheta_{2} \circ T$ is completely positive, where ϑ_{2} denotes the transpose map in the computational basis. We have

$$
C_{\vartheta_{2} \circ T}=\left(\begin{array}{cccc}
\frac{1}{3} & 0 & 0 & 0 \\
0 & \frac{2}{3} & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & \frac{2}{3} & 0 \\
0 & 0 & 0 & \frac{1}{3}
\end{array}\right),
$$

which is positive semidefinite (we only need to check that the inner block is positive semidefinite and it is since the two principal minors are non-negative).

Problem 2

Consider a quantum channel $T: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ with Choi operator C_{T} and the following scenario: Alice and Bob are two scientists who each posess a qubit quantum system labelled A and B, respectively. The joint quantum state of these qubits is given by the normalized Choi operator $\rho_{A B}=C_{T} / \operatorname{Tr}\left[C_{T}\right]$.

2 a

Assume that there is another qubit quantum system labelled A^{\prime} in Alice's laboratory. Initially, this quantum system is uncorrelated with the system A and in a quantum state $\sigma_{A^{\prime}}$ unknown to Alice. Compute the final quantum state τ_{B} of Bob's system after Alice measures her systems $A^{\prime} A$ using the Bell measurement and obtained a particular outcome $(i, j) \in\{0,1\}^{2}$.

Solution: The Bell measurement is the projection-valued measure $\mu:\{0,1\}^{2} \rightarrow B\left(\mathbb{C}^{2}\right)^{+}$given by

$$
\mu(i, j)=\left|\psi_{i j}\right\rangle\left\langle\psi_{i j}\right|
$$

with $\left|\psi_{i j}\right\rangle=\left(\mathbb{1}_{2} \otimes \sigma_{i j}\right)\left|\Omega_{2}\right\rangle$, where $\sigma_{00}=\mathbb{1}_{2}, \sigma_{01}=\sigma_{x}, \sigma_{10}=\sigma_{y}, \sigma_{11}=\sigma_{z}$. Since each quantum channel admits a Kraus decomposition, it is helpful to consider the case of a single Kraus operator $K: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. In this case we have

$$
C_{T}=2\left(\mathbb{1}_{A} \otimes K\right) \omega_{2}\left(\mathbb{1}_{A} \otimes K^{\dagger}\right)
$$

where $\omega_{2}=\left|\Omega_{2}\right\rangle\left\langle\Omega_{2}\right|$ denotes the maximally entangled state. Using the computation from the standard teleportation protocol, we can compute that

$$
\begin{aligned}
\left(\left\langle\psi_{i j}\right| \otimes \mathbb{1}_{B}\right)\left(\sigma_{A^{\prime}} \otimes C_{T}\right)\left(\left|\psi_{i j}\right\rangle \otimes \mathbb{1}_{B}\right) & =2\left(\left\langle\psi_{i j}\right| \otimes K\right)\left(\sigma_{A^{\prime}} \otimes \omega_{2}\right)\left(\left|\psi_{i j}\right\rangle \otimes K^{\dagger}\right) \\
& =\frac{1}{2} K \sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j} K^{\dagger} .
\end{aligned}
$$

For a general quantum channel T, we conclude by using the Kraus decomposition and linearity that

$$
\left(\left\langle\psi_{i j}\right| \otimes \mathbb{1}_{B}\right)\left(\sigma_{A^{\prime}} \otimes \frac{C_{T}}{\operatorname{Tr}\left[C_{T}\right]}\right)\left(\left|\psi_{i j}\right\rangle \otimes \mathbb{1}_{B}\right)=\frac{1}{4} T\left(\sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j}\right),
$$

where we used that $\operatorname{Tr}\left[C_{T}\right]=2$ by trace-preservation. This shows that we obtain the outcome $(i, j) \in\{0,1\}^{2}$ with probability $1 / 4$ and after observing this outcome, the state of Bob's system is given by

$$
\tau_{B}=T\left(\sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j}\right)
$$

2b

Assume that

$$
T=p_{0} \mathrm{id}_{2}+p_{1} \operatorname{Ad}_{\sigma_{x}}+p_{2} \operatorname{Ad}_{\sigma_{y}}+p_{3} \operatorname{Ad}_{\sigma_{3}}
$$

for probabilities $p_{0}, p_{1}, p_{2}, p_{3} \in[0,1]$ summing to 1 . After her measurement Alice communicates the measurement outcome $(i, j) \in\{0,1\}^{2}$ to Bob. What quantum channel does Bob have to apply in order to be sure that his quantum system is in the quantum state $T\left(\sigma_{A^{\prime}}\right)$.

Solution: By the previous exercise, Bob knows that he holds the quantum state

$$
\tau_{B}=T\left(\sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j}\right)
$$

after he received Alice's message. By the anticommutation relation of the Pauli matrices, we find that

$$
\operatorname{Ad}_{\sigma_{k l}}\left(\sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j}\right)=\sigma_{k l} \sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j} \sigma_{k l}=\sigma_{i j} \sigma_{k l} \sigma_{A^{\prime}} \sigma_{k l} \sigma_{i j}=\sigma_{i j} \operatorname{Ad}_{\sigma_{k l}}\left(\sigma_{A^{\prime}}\right) \sigma_{i j}
$$

Note two signs have cancelled each other in the second equation. We conclude that for the specified channel we have

$$
\tau_{B}=T\left(\sigma_{i j} \sigma_{A^{\prime}} \sigma_{i j}\right)=\sigma_{i j} T\left(\sigma_{A^{\prime}}\right) \sigma_{i j} .
$$

Bob can therefore apply the unitary quantum channel $\mathrm{Ad}_{\sigma_{i j}}$ (as in the original teleportation protocol) to make sure that his system is in the quantum state

$$
T\left(\sigma_{A^{\prime}}\right)
$$

Problem 3

In the following, let $\sigma_{1}, \sigma_{2}, \sigma_{3} \in B\left(\mathbb{C}^{2}\right)$ denote the Pauli matrices. Let $P: B\left(\mathbb{C}^{2}\right) \rightarrow B\left(\mathbb{C}^{2}\right)$ denote a linear map of the form

$$
P(x)=\operatorname{Tr}[x] \frac{\mathbb{1}_{2}}{2}+\frac{1}{2} \lambda_{1} \operatorname{Tr}\left[\sigma_{1} x\right] \sigma_{1}+\frac{1}{2} \lambda_{2} \operatorname{Tr}\left[\sigma_{2} x\right] \sigma_{2},
$$

with $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Assume that P is positive and show that there exists a $\lambda_{3} \in[-1,1]$ such that the map

$$
T=P+\frac{1}{2} \lambda_{3} \operatorname{Tr}\left[\sigma_{3} x\right] \sigma_{3},
$$

is a quantum channel. Determine for which λ_{1} and λ_{2}, the quantum channel T can be entanglement breaking.

Solution: Each map of the stated form is unital and trace-preserving. Since P is assumed to be positive, we know that $\lambda_{1}, \lambda_{2} \in[-1,1]$. The parameters $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ defining unital qubit channels form a tetrahedron inside the cube $[-1,1]^{3}$. Now, envision the point $\left(\lambda_{1}, \lambda_{2}, 0\right)$ in the $x-y$-plane. For each such point we can go up or down in the z-direction and hit the tetrahedron, or ,to say it in more high-level terms, the projection of the tetrahedron to the x - y-plane is the entire square $[-1,1]^{2}$. In other words, there always exists a $\lambda_{3} \in[-1,1]$ such that the stated T is a quantum channel.
For the second question, recall that the entanglement breaking unital qubit channels form an octahedron. Since projecting this octahedron to the $x-y$-plane coincides with the intersection of the octahedron with the x - y-plane we see that we can only obtain an entanglement breaking qubit channel if the map P was an entanglement breaking qubit channel to begin with.

Problem 4

Imagine you are a quantum telecommunication engineer. You have a device to produce a qubit in either of the states $\rho_{0}, \rho_{1} \in D\left(\mathbb{C}^{2}\right)$ given by

$$
\rho_{0}=|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \rho_{1}=|+\rangle\langle+|=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),
$$

and send it to a distant location.

4 a

Find a POVM $\mu:\{0,1\} \rightarrow B\left(\mathbb{C}^{2}\right)$ such that the classical channel $N_{\mu}:\{0,1\} \rightarrow \mathcal{P}(\{0,1\})$ with $N_{\mu}(x \mid y)=\operatorname{Tr}\left[\mu(x) \rho_{y}\right]$ is binary symmetric. Compute the capacity of the classical channel N_{μ}.

Solution: Observe that

$$
\rho_{0}=\frac{1}{2}\left(\mathbb{1}_{2}+\sigma_{z}\right),
$$

and

$$
\rho_{1}=\frac{1}{2}\left(\mathbb{1}_{2}+\sigma_{x}\right),
$$

correspond to the vectors

$$
v_{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \text { and } v_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),
$$

on the Bloch sphere. From the way the spinor map transforms angles, we can try to find two orthogonal pure qubit states (which will form a projection-valued measure) such that their overlaps with the vectors v_{0} and v_{1} are symmetric. From the Bloch sphere representation, we might get the idea to use

$$
w_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \text { and } w_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

which lead to overlaps

$$
\begin{aligned}
& \left\langle w_{0}, v_{0}\right\rangle=\frac{1}{\sqrt{2}} \\
& \left\langle w_{1}, v_{0}\right\rangle=-\frac{1}{\sqrt{2}} \\
& \left\langle w_{0}, v_{1}\right\rangle=-\frac{1}{\sqrt{2}}, \\
& \left\langle w_{1}, v_{1}\right\rangle=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Now, we can transform the vectors w_{0}, w_{1} to pure states giving rise to the projection-valued measure $\mu:\{0,1\} \rightarrow B\left(\mathbb{C}^{2}\right)$ with

$$
\mu(0)=\frac{1}{2}\left(\mathbb{1}_{2}+\frac{1}{\sqrt{2}}\left(\sigma_{z}-\sigma_{x}\right)\right)
$$

and

$$
\mu(1)=\frac{1}{2}\left(\mathbb{1}_{2}+\frac{1}{\sqrt{2}}\left(-\sigma_{z}+\sigma_{x}\right)\right) .
$$

With this we find that

$$
\begin{aligned}
\operatorname{Tr}\left[\mu(0) \rho_{0}\right] & =\frac{1}{2}+\frac{1}{2 \sqrt{2}}, \\
\operatorname{Tr}\left[\mu(1) \rho_{0}\right] & =\frac{1}{2}-\frac{1}{2 \sqrt{2}}, \\
\operatorname{Tr}\left[\mu(0) \rho_{1}\right] & =\frac{1}{2}-\frac{1}{2 \sqrt{2}}, \\
\operatorname{Tr}\left[\mu(1) \rho_{1}\right] & =\frac{1}{2}+\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

With this the channel $N_{\mu}:\{0,1\} \rightarrow \mathcal{P}(\{0,1\})$ is binary symmetric with flipping probability

$$
p=\frac{1}{2}-\frac{1}{2 \sqrt{2}}=0.1464 \ldots
$$

4b

Show that you can send classical information at a rate at least 0.3991 bits per use of your device.

Solution: The capacity of the binary symmetric channel from the previous exercise is given by

$$
C\left(N_{\mu}\right)=1-h_{2}(p)=1-h_{2}(1-p)=1-0.6009 \ldots \approx 0.3991 .
$$

4c

Argue that we can send classical information at a rate of at least 0.6 bits per use of the device, if we allow for global measurements at the receiving end.

Solution: We know that the Holevo-information of any ensemble $\left\{p_{x}, \rho_{x}\right\}_{x \in\{0,1\}}$ is an achievable rate for classical communication if we allow for global measurements. We can compute

$$
\chi\left(\left\{p_{x}, \rho_{x}\right\}_{x \in\{0,1\}}\right)=H\left(\sum_{x} p_{x} \rho_{x}\right)-\sum_{x} p_{x} H\left(\rho_{x}\right)=H\left(\sum_{x} p_{x} \rho_{x}\right),
$$

since ρ_{0} and ρ_{1} are pure. Choosing $p_{0}=p_{1}=1 / 2$ we find that

$$
H\left(\rho_{0} / 2+\rho_{1} / 2\right)=H\left(\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 4 & 1 / 4
\end{array}\right)\right)
$$

is achievable. Since the spectrum of the state in the entropy is also given by $1 / 2 \pm 1 / 2 \sqrt{2}$ we find that $H(p)=0.6009$ is an achievable rate.

Matlab-utskrift.
>> $A=\left[\begin{array}{ll}3 / 4 & 1 / 4\end{array}\right.$
1/4 1/4]
$\mathrm{A}=$
$3 / 4 \quad 1 / 4$
$1 / 4 \quad 1 / 4$
>> eig(A)
ans $=$
0.8536
0.1464
>> $\mathrm{x}=1 / 2+1 /(2 *$ sqrt (2) $)$
$\mathrm{x}=$
0.8536
>> -x* $\log 2(x)-(1-x) * \log 2(1-x)$
ans $=$
0.6009

