UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT 4430 — Quantum information theory (Mock exam)
Day of examination: Whenever

Examination hours:  T-T+4h

This problem set consists of 8 pages.

Appendices: None

Permitted aids: none.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note: The exam consists of 10 subexercises which all give maximally 10
points. To get a point for a subexercise it is expected that you give an
explanation of your solution.

Problem 1

Consider the linear map T : B(C?) — B(C?) given by
2 1
T ((371 Z’Q)) _ <%QE11+ 374 . 6$22 )
T3 T4 T3 374 + 571

Show that T is a quantum channel.

1la

Solution: Compute the Choi operator

Cr=

o= O Owl
O Owiv O
Owiv O O
wi= O O ol

This operator is positive semidefinite, since it is selfadjoint and it has
eigenvalues 2/3,1/2 and 1/6. Finally, T is trace-preserving since

Ty T2 ] 2 1 2 _ _ Ty T2
Tr {T ((363 x))} = (§x1+§x4)+(§x4+§x1) = r1+xy = Tt v o))

1b

Compute a Kraus decomposition for 7'.

(Continued on page 2.)
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Solution: The eigenvalue A; = 2/3 has multiplicity 2 and two orthogonal
eigenvectors for this eigenvalue are

v = , and vy =

o= O O

0
1
0
0

An eigenvector for the eigenvalue Ay = 1/2 is

1

W Lo
3\/507

1

and an eigenvector for the eigenvalue A3 = 1/6 is

1
Vg = —=

V2

o O =

—1

Using the inverse vectorization and multiplying by the square root of the
corresponding eigenvalue gives the Kraus operators

(0 /2/3 (0 0 110 1 /1 0
Kl_(o 0 )’K2_< 2/3 0)’K3_2<0 1)’K4_\/ﬁ<0 —1)'

With those operators we have

T(X) =K1 XK + K, XK + Ky XK + K XK.

1c
Compute a Stinespring dilation of 7.

Solution: By "stacking" the Kraus operators we find a Stinespring
isometry V : C? — C?® by

0 2/3
0 0
K, 0 0
v [ K| Z 2/3 0
K 1/2 0
K, 0 1/2
1//12 0

We have the Stinespring dilation
T(X)=Trg [VXVT],
where C® = C? @ C* and E refers to the 4-dimensional tensor factor (in our

case this is the sum of the 2 x 2 diagonal blocks of VXVT).

(Continued on page 3.)
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1d

Is the quantum channel 7" entanglement breaking?

Solution: Yes, it is! Since T is a unital qubit channel it is enough to check
that ¥, o T' is completely positive, where 95 denotes the transpose map in
the computational basis. We have

O Owli=

O'IQQOT -

O ol—win O
w O O O

QO wlhhoi— O

0

which is positive semidefinite (we only need to check that the inner block is
positive semidefinite and it is since the two principal minors are
non-negative).

Problem 2

Consider a quantum channel T : B(C?) — B(C?) with Choi operator Cr
and the following scenario: Alice and Bob are two scientists who each
posess a qubit quantum system labelled A and B, respectively. The joint
quantum state of these qubits is given by the normalized Choi operator

PAB = CT/TI" [CT]

2a

Assume that there is another qubit quantum system labelled A" in Alice’s
laboratory. Initially, this quantum system is uncorrelated with the system A
and in a quantum state o unknown to Alice. Compute the final quantum
state 75 of Bob’s system after Alice measures her systems A’A using the
Bell measurement and obtained a particular outcome (i, j) € {0, 1}

Solution: The Bell measurement is the projection-valued measure
p:{0,1}? — B(C?)* given by

1(3, ) = |i; Xabisl,

with [1);;) = (12 ® 045)|Q2), where ogg = 13, 001 = 04, 0190 = 0y, 011 = 0.
Since each quantum channel admits a Kraus decomposition, it is helpful to
consider the case of a single Kraus operator K : C2 — C2. In this case we
have

Cr=2(1,4® K)wy(14® K"),

where wy = |25)(€22| denotes the maximally entangled state. Using the
computation from the standard teleportation protocol, we can compute that

(5] @ 1) (04 @ Cr) (JUy;) ® 1) = 2 ((1hyj] ® K) (04 ®@ wa) (|¢oy;) ® KT)

= §K0'ijO'A/UinT.

(Continued on page 4.)
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For a general quantum channel 7', we conclude by using the Kraus
decomposition and linearity that

(] @ 1) (UA' ® %) ([4ij) ® 1) = iT(UijUA’Uij) ,

where we used that Tr [Cr] = 2 by trace-preservation. This shows that we
obtain the outcome (i,5) € {0,1}? with probability 1/4 and after observing
this outcome, the state of Bob’s system is given by

™B — T (UijUA’Uij) .

2b

Assume that
T = poidy + p1Ad,, + p2Ad,, + p3Ad,,,

for probabilities py, p1, p2, p3 € [0, 1] summing to 1. After her measurement
Alice communicates the measurement outcome (i, j) € {0,1}* to Bob.
What quantum channel does Bob have to apply in order to be sure that his
quantum system is in the quantum state T'(o /).

Solution: By the previous exercise, Bob knows that he holds the quantum
state
™B — T (UijUA’Uij) .

after he received Alice’s message. By the anticommutation relation of the
Pauli matrices, we find that

Adakl<0-ijO-A’O-ij) = 0k104jO0A' 040k = 04j0k10AOk1045 = O'Z‘jAdUkl(O'A/)O'ij.

Note two signs have cancelled each other in the second equation. We
conclude that for the specified channel we have

8 =T (0ij00045) = 05T (0a)04.

Bob can therefore apply the unitary quantum channel Ad,,; (as in the
original teleportation protocol) to make sure that his system is in the
quantum state

T(O’ A/).

Problem 3

In the following, let oy, 09,03 € B(C?) denote the Pauli matrices. Let
P : B(C?) — B(C?) denote a linear map of the form

1 1 1
P(x) = Tr|[z] ?2 + §A1Tr [o1x]) o1 + 5)\2Tr [o2] 09,

(Continued on page 5.)
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with A1, Ao € R. Assume that P is positive and show that there exists a
A3 € [—1,1] such that the map

1
T=P+ 5/\3Tr [osz] o3,

is a quantum channel. Determine for which A; and \;, the quantum
channel 7' can be entanglement breaking.

Solution: Each map of the stated form is unital and trace-preserving.
Since P is assumed to be positive, we know that A\, Ay € [—1,1]. The
parameters (A1, A2, A3) defining unital qubit channels form a tetrahedron
inside the cube [—1, 1]3. Now, envision the point (A, Ag,0) in the z-y-plane.
For each such point we can go up or down in the z-direction and hit the
tetrahedron, or ,to say it in more high-level terms, the projection of the
tetrahedron to the z-y-plane is the entire square [—1, 1]2. In other words,
there always exists a A\3 € [—1, 1] such that the stated T is a quantum
channel.

For the second question, recall that the entanglement breaking unital qubit
channels form an octahedron. Since projecting this octahedron to the
x-y-plane coincides with the intersection of the octahedron with the
x-y-plane we see that we can only obtain an entanglement breaking qubit
channel if the map P was an entanglement breaking qubit channel to begin
with.

Problem 4

Imagine you are a quantum telecommunication engineer. You have a device
to produce a qubit in either of the states pg, py € D(C?) given by

m=1001= (5 o) wd m=t =3 (5 1),

and send it to a distant location.

4a

Find a POVM g : {0,1} — B(C?) such that the classical channel
N, :{0,1} = P ({0,1}) with N,(z|y) = Tr [p(x)p,] is binary symmetric.
Compute the capacity of the classical channel N, .

Solution: Observe that

1
,00:5(]12‘1‘0,3)7

and

1
P1:§(]12+0z),

(Continued on page 6.)
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correspond to the vectors

1 0
v=\|0],andv;=1|1],
0 0

on the Bloch sphere. From the way the spinor map transforms angles, we
can try to find two orthogonal pure qubit states (which will form a
projection-valued measure) such that their overlaps with the vectors vy and
vy are symmetric. From the Bloch sphere representation, we might get the
idea to use . .

wozL -1 ,andwl:L 1],

V2 o v2\ o

which lead to overlaps

1
(wo,vo> = E,
_ 1
<w17UO> - \/57
_
<wO7Ul> - \/E’

1
(wl,vl> = E

Now, we can transform the vectors wy, w; to pure states giving rise to the
projection-valued measure p : {0,1} — B(C?) with

u(0) =5 <]12 - %(Uz - %))

and

With this we find that

Tr [1(0)po] = % + %
T ()] = 5= =
T u0)pi] = 5 - 5=,
Tr[p(L)p] = % + %

With this the channel N, : {0,1} — P ({0, 1}) is binary symmetric with

flipping probability
1 1
= - — ——=0.1464. . ..
=3 2v/2

(Continued on page 7.)
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4b

Show that you can send classical information at a rate at least 0.3991 bits
per use of your device.

Solution: The capacity of the binary symmetric channel from the previous
exercise is given by

C(N,) =1—hy(p) =1 —hy(1 —p) =1 —0.6009. ..~ 0.3991.

4c

Argue that we can send classical information at a rate of at least 0.6 bits per
use of the device, if we allow for global measurements at the receiving end.

Solution: We know that the Holevo-information of any ensemble
{Px, px}xe{o,l} is an achievable rate for classical communication if we allow
for global measurements. We can compute

({pxa px}xe{o 1} Z pacp:r pr p:r = Z pxpm

since py and p; are pure. Choosing py = p; = 1/2 we find that

/2 + o) =1 (35 V1))

is achievable. Since the spectrum of the state in the entropy is also given by
1/2 +1/2v/2 we find that H(p) = 0.6009 is an achievable rate.

(Continued on page 8.)
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Matlab-utskrift.

>> A=[3/4 1/4

1/4 1/4]
A =
3/4 1/4
1/4 1/4
>> eig(A)
ans =
0.8536
0.1464

>> x=1/2 + 1/(2%sqrt(2))
X =
0.8536
>> -xxlog2(x)-(1-x)*log2(1-x)
ans =

0.6009
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