
UNIVERSITY OF OSLO
Faculty of Mathematics and Natural Sciences

Examination in: MAT 4430 — Quantum information theory (Mock exam)

Day of examination: Whenever

Examination hours: T –T+4h

This problem set consists of 8 pages.

Appendices: None

Permitted aids: none.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note: The exam consists of 10 subexercises which all give maximally 10
points. To get a point for a subexercise it is expected that you give an
explanation of your solution.

Problem 1
Consider the linear map T : B(C2) → B(C2) given by

T

((
x1 x2
x3 x4

))
=

(
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3
x1 +

2
3
x4

1
6
x2

1
6
x3

1
3
x4 +

2
3
x1

)
1a

Show that T is a quantum channel.

Solution: Compute the Choi operator

CT =


1
3

0 0 1
6

0 2
3

0 0
0 0 2

3
0

1
6

0 0 1
3

 .

This operator is positive semidefinite, since it is selfadjoint and it has
eigenvalues 2/3, 1/2 and 1/6. Finally, T is trace-preserving since

Tr
[
T

((
x1 x2
x3 x4

))]
= (

1

3
x1+

2

3
x4)+(

1

3
x4+

2

3
x1) = x1+x4 = Tr

((
x1 x2
x3 x4

))
.

1b

Compute a Kraus decomposition for T .

(Continued on page 2.)
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Solution: The eigenvalue λ1 = 2/3 has multiplicity 2 and two orthogonal
eigenvectors for this eigenvalue are

v1 =


0
1
0
0

 , and v2 =


0
0
1
0

 .

An eigenvector for the eigenvalue λ2 = 1/2 is

v3 =
1√
2


1
0
0
1

 ,

and an eigenvector for the eigenvalue λ3 = 1/6 is

v4 =
1√
2


1
0
0
−1

 .

Using the inverse vectorization and multiplying by the square root of the
corresponding eigenvalue gives the Kraus operators

K1 =

(
0

√
2/3

0 0

)
, K2 =

(
0 0√
2/3 0

)
, K3 =

1

2

(
1 0
0 1

)
, K4 =

1√
12

(
1 0
0 −1

)
.

With those operators we have

T (X) = K1XK
†
1 +K2XK

†
2 +K3XK

†
3 +K4XK

†
4.

1c

Compute a Stinespring dilation of T .

Solution: By "stacking" the Kraus operators we find a Stinespring
isometry V : C2 → C8 by

V =


K1

K2

K3

K4

 =



0
√

2/3
0 0
0 0√
2/3 0
1/2 0
0 1/2

1/
√
12 0

0 −1/
√
12


.

We have the Stinespring dilation

T (X) = TrE
[
V XV †] ,

where C8 = C2 ⊗ C4 and E refers to the 4-dimensional tensor factor (in our
case this is the sum of the 2× 2 diagonal blocks of V XV †).

(Continued on page 3.)
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1d

Is the quantum channel T entanglement breaking?

Solution: Yes, it is! Since T is a unital qubit channel it is enough to check
that ϑ2 ◦ T is completely positive, where ϑ2 denotes the transpose map in
the computational basis. We have

Cϑ2◦T =


1
3

0 0 0
0 2

3
1
6

0
0 1

6
2
3

0
0 0 0 1

3

 ,

which is positive semidefinite (we only need to check that the inner block is
positive semidefinite and it is since the two principal minors are
non-negative).

Problem 2
Consider a quantum channel T : B(C2) → B(C2) with Choi operator CT

and the following scenario: Alice and Bob are two scientists who each
posess a qubit quantum system labelled A and B, respectively. The joint
quantum state of these qubits is given by the normalized Choi operator
ρAB = CT/Tr [CT ].

2a

Assume that there is another qubit quantum system labelled A′ in Alice’s
laboratory. Initially, this quantum system is uncorrelated with the system A
and in a quantum state σA′ unknown to Alice. Compute the final quantum
state τB of Bob’s system after Alice measures her systems A′A using the
Bell measurement and obtained a particular outcome (i, j) ∈ {0, 1}2.

Solution: The Bell measurement is the projection-valued measure
µ : {0, 1}2 → B(C2)+ given by

µ(i, j) = |ψij⟩⟨ψij|,

with |ψij⟩ = (12 ⊗ σij)|Ω2⟩, where σ00 = 12, σ01 = σx, σ10 = σy, σ11 = σz.
Since each quantum channel admits a Kraus decomposition, it is helpful to
consider the case of a single Kraus operator K : C2 → C2. In this case we
have

CT = 2(1A ⊗K)ω2(1A ⊗K†),

where ω2 = |Ω2⟩⟨Ω2| denotes the maximally entangled state. Using the
computation from the standard teleportation protocol, we can compute that

(⟨ψij| ⊗ 1B) (σA′ ⊗ CT ) (|ψij⟩ ⊗ 1B) = 2 (⟨ψij| ⊗K) (σA′ ⊗ ω2)
(
|ψij⟩ ⊗K†)

=
1

2
KσijσA′σijK

†.

(Continued on page 4.)
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For a general quantum channel T , we conclude by using the Kraus
decomposition and linearity that

(⟨ψij| ⊗ 1B)

(
σA′ ⊗ CT

Tr [CT ]

)
(|ψij⟩ ⊗ 1B) =

1

4
T (σijσA′σij) ,

where we used that Tr [CT ] = 2 by trace-preservation. This shows that we
obtain the outcome (i, j) ∈ {0, 1}2 with probability 1/4 and after observing
this outcome, the state of Bob’s system is given by

τB = T (σijσA′σij) .

2b

Assume that
T = p0id2 + p1Adσx + p2Adσy + p3Adσ3 ,

for probabilities p0, p1, p2, p3 ∈ [0, 1] summing to 1. After her measurement
Alice communicates the measurement outcome (i, j) ∈ {0, 1}2 to Bob.
What quantum channel does Bob have to apply in order to be sure that his
quantum system is in the quantum state T (σA′).

Solution: By the previous exercise, Bob knows that he holds the quantum
state

τB = T (σijσA′σij) .

after he received Alice’s message. By the anticommutation relation of the
Pauli matrices, we find that

Adσkl
(σijσA′σij) = σklσijσA′σijσkl = σijσklσA′σklσij = σijAdσkl

(σA′)σij.

Note two signs have cancelled each other in the second equation. We
conclude that for the specified channel we have

τB = T (σijσA′σij) = σijT (σA′)σij.

Bob can therefore apply the unitary quantum channel Adσij
(as in the

original teleportation protocol) to make sure that his system is in the
quantum state

T (σA′).

Problem 3
In the following, let σ1, σ2, σ3 ∈ B(C2) denote the Pauli matrices. Let
P : B(C2) → B(C2) denote a linear map of the form

P (x) = Tr [x]
12

2
+

1

2
λ1Tr [σ1x]σ1 +

1

2
λ2Tr [σ2x]σ2,

(Continued on page 5.)
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with λ1, λ2 ∈ R. Assume that P is positive and show that there exists a
λ3 ∈ [−1, 1] such that the map

T = P +
1

2
λ3Tr [σ3x]σ3,

is a quantum channel. Determine for which λ1 and λ2, the quantum
channel T can be entanglement breaking.

Solution: Each map of the stated form is unital and trace-preserving.
Since P is assumed to be positive, we know that λ1, λ2 ∈ [−1, 1]. The
parameters (λ1, λ2, λ3) defining unital qubit channels form a tetrahedron
inside the cube [−1, 1]3. Now, envision the point (λ1, λ2, 0) in the x-y-plane.
For each such point we can go up or down in the z-direction and hit the
tetrahedron, or ,to say it in more high-level terms, the projection of the
tetrahedron to the x-y-plane is the entire square [−1, 1]2. In other words,
there always exists a λ3 ∈ [−1, 1] such that the stated T is a quantum
channel.
For the second question, recall that the entanglement breaking unital qubit
channels form an octahedron. Since projecting this octahedron to the
x-y-plane coincides with the intersection of the octahedron with the
x-y-plane we see that we can only obtain an entanglement breaking qubit
channel if the map P was an entanglement breaking qubit channel to begin
with.

Problem 4
Imagine you are a quantum telecommunication engineer. You have a device
to produce a qubit in either of the states ρ0, ρ1 ∈ D(C2) given by

ρ0 = |0⟩⟨0| =
(
1 0
0 0

)
and ρ1 = |+⟩⟨+| = 1

2

(
1 1
1 1

)
,

and send it to a distant location.

4a

Find a POVM µ : {0, 1} → B(C2) such that the classical channel
Nµ : {0, 1} → P ({0, 1}) with Nµ(x|y) = Tr [µ(x)ρy] is binary symmetric.
Compute the capacity of the classical channel Nµ .

Solution: Observe that
ρ0 =

1

2
(12 + σz) ,

and
ρ1 =

1

2
(12 + σx) ,

(Continued on page 6.)
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correspond to the vectors

v0 =

1
0
0

 , and v1 =

0
1
0

 ,

on the Bloch sphere. From the way the spinor map transforms angles, we
can try to find two orthogonal pure qubit states (which will form a
projection-valued measure) such that their overlaps with the vectors v0 and
v1 are symmetric. From the Bloch sphere representation, we might get the
idea to use

w0 =
1√
2

 1
−1
0

 , and w1 =
1√
2

−1
1
0

 ,

which lead to overlaps

⟨w0, v0⟩ =
1√
2
,

⟨w1, v0⟩ = − 1√
2
,

⟨w0, v1⟩ = − 1√
2
,

⟨w1, v1⟩ =
1√
2
.

Now, we can transform the vectors w0, w1 to pure states giving rise to the
projection-valued measure µ : {0, 1} → B(C2) with

µ(0) =
1

2

(
12 +

1√
2
(σz − σx)

)
and

µ(1) =
1

2

(
12 +

1√
2
(−σz + σx)

)
.

With this we find that

Tr [µ(0)ρ0] =
1

2
+

1

2
√
2
,

Tr [µ(1)ρ0] =
1

2
− 1

2
√
2
,

Tr [µ(0)ρ1] =
1

2
− 1

2
√
2
,

Tr [µ(1)ρ1] =
1

2
+

1

2
√
2
.

With this the channel Nµ : {0, 1} → P ({0, 1}) is binary symmetric with
flipping probability

p =
1

2
− 1

2
√
2
= 0.1464 . . . .

(Continued on page 7.)
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4b

Show that you can send classical information at a rate at least 0.3991 bits
per use of your device.

Solution: The capacity of the binary symmetric channel from the previous
exercise is given by

C(Nµ) = 1− h2(p) = 1− h2(1− p) = 1− 0.6009 . . . ≈ 0.3991.

4c

Argue that we can send classical information at a rate of at least 0.6 bits per
use of the device, if we allow for global measurements at the receiving end.

Solution: We know that the Holevo-information of any ensemble
{px, ρx}x∈{0,1} is an achievable rate for classical communication if we allow
for global measurements. We can compute

χ
(
{px, ρx}x∈{0,1}

)
= H(

∑
x

pxρx)−
∑
x

pxH(ρx) = H(
∑
x

pxρx),

since ρ0 and ρ1 are pure. Choosing p0 = p1 = 1/2 we find that

H(ρ0/2 + ρ1/2) = H

((
3/4 1/4
1/4 1/4

))
,

is achievable. Since the spectrum of the state in the entropy is also given by
1/2± 1/2

√
2 we find that H(p) = 0.6009 is an achievable rate.

(Continued on page 8.)
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Matlab-utskrift.

>> A=[3/4 1/4
1/4 1/4]

A =

3/4 1/4
1/4 1/4

>> eig(A)

ans =

0.8536
0.1464

>> x=1/2 + 1/(2*sqrt(2))

x =

0.8536

>> -x*log2(x)-(1-x)*log2(1-x)

ans =

0.6009


