MAT4450: EXERCISE PROBLEMS

'Exercise' numbers refer to those of Douglas's book.

Problem 1 (Exercise 1.25). Let \mathscr{X} be a Banach space. Show that \mathscr{X} is a dense subspace of \mathscr{X}^{**} with respect to the weak*-topology, i.e., the $\sigma(\mathscr{X}^{**}, \mathscr{X}^{*})$ -topology.

Hint. For example, try to showing that the w^{*}-closure \mathscr{Y} of \mathscr{X} is equal to \mathscr{X}^{**} by contradiction: if $\mathscr{X}^{**}/\mathscr{Y}$ is nontrivial, a functional on this space corresponds to a w^{*}-continuous functional on \mathscr{X}^{**} which vanishes on \mathscr{X} . What are such functionals?

Problem 2 (Exercise 1.33). Let \mathscr{X} be a Banach space. Show that a linear form $\omega : \mathscr{X}^* \to \mathbb{C}$ is continuous for the weak*-topology if and only if its restriction to the unit ball \mathscr{X}_1^* is continuous for the (restriction of) weak*-topology.

Hint. We want to show that, if ω is w^{*}-continuous on \mathscr{X}_1^* , then it is given by an evaluation at some $v \in \mathscr{X}$. Explain that the Hahn–Banach theorem implies that there is an (isometric) embedding $\mathscr{X} \to C(\mathscr{X}_1^*)$.

In the following $\mathscr{X} \otimes \mathscr{Y}$ denotes the algebraic tensor product of \mathscr{X} and \mathscr{Y} .

Problem 3 (Exercises 1.37 and 1.39). For $z \in \mathscr{X} \otimes \mathscr{Y}$, its *injective* norm (or inductive norm, ϵ -norm) is defined by

$$\left\|z\right\|_{\epsilon} = \sup\left\{\sum_{i=1}^{n} \left|\phi(x_{i})\psi(y_{i})\right| \middle| \phi \in \mathscr{X}_{1}^{*}, \psi \in \mathscr{Y}_{1}^{*}\right\}$$

where $z = \sum_{i=1}^{n} x_i \otimes y_i$ (this definition does not depend on the choice of this expression). When X and Y are compact topological spaces, show that the inclusion

 $C(X)\otimes C(Y)\to C(X\times Y),\quad f\otimes g\mapsto h(x,y)=f(x)g(y)$

induces the injective norm.

Hint. The supremum will be attained by extremal points of $C(X)_1^*$ and $C(Y)_1^*$. What are those?

Problem 4 (Exercises 1.36 and 1.40). For $z \in \mathscr{X} \otimes \mathscr{Y}$, its *projective* norm (or π -norm) is defined by

$$||z||_{\pi} = \inf \left\{ \sum_{i=1}^{n} ||x_i|| \, ||y_i|| \, \left| \, z = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

(This time $\sum_{i=1}^{n} ||x_i|| ||y_i||$ will depend on representatives $(x_i)_i$ and $(y_i)_i$.) When X and Y are compact topological spaces, show that the above inclusion $C(X) \otimes C(Y) \to C(X \times Y)$ induces a homeomorphism from the completion for projective norm (if and) only if at least one of X and Y is finite.

Hint. If X and Y both have N points, one can choose $(f_i)_{i=1}^N$ and $(g_i)_{i=1}^N$ (supported on small neighborhoods of those points) such that

$$\left\|\sum_{i} f_{i} \otimes g_{i}\right\|_{\pi} \ge N, \qquad \qquad \left\|\sum_{i} f_{i} \otimes g_{i}\right\|_{C(X \times Y)} = 1.$$

Date: 2019.02.11.