MAT4450 - Spring 2024 - Exercises - Set 1 (revised)¹

We first recall some terminology. Let X be a topological space. A subset V of X is called a *neighborhood of* $x \in X$ whenever V contains an open set to which x belongs. We denote the family of all neighborhoods of x by \mathcal{N}_x (and call it the *neighborhood system of* x).² By *neighborhood basis at* x we mean a collection \mathcal{B}_x of neighborhoods of x (i.e., $\mathcal{B}_x \subseteq \mathcal{N}_x$) such that each neighborhood of x contains at least one element of \mathcal{B}_x .

Exercise 1. Assume X be a topological space which is *first countable*, that is, every $x \in X$ has a countable neighborhood basis. Show that the topology of X may then be described with the help of sequences, by showing that for each $A \subseteq X$ and $x \in X$ we have

 $x \in \overline{A} \Leftrightarrow$ there exists a sequence $\{x_n\}$ in A such that $x_n \to x$ as $n \to \infty$.

Exercise 2. Let $X = \mathcal{F}(\mathbb{R}, \mathbb{R})$ consists of all real-valued functions on \mathbb{R} and equip it with the topology of pointwise convergence. We recall that a neighborhood basis \mathcal{B}_f at $f \in X$ is given by

 $\mathcal{B}_f = \{ V_{f,S,\varepsilon} : S \text{ is a finite subset of } \mathbb{R}, \, \varepsilon > 0 \},$

where $V_{f,S,\varepsilon} := \{g \in X : |f(s) - g(s)| < \varepsilon \text{ for every } s \in S\}.$

For $h \in X$ we set $\operatorname{supp}(h) := \{t \in \mathbb{R} : h(t) \neq 0\}$. Moreover, we set

$$A := \{h \in X : \operatorname{supp}(h) \text{ is finite}\}.$$

a) Show that $\overline{A} = X$ (i.e., A is dense in X) in the following two ways:

i) by showing that for each $f \in X$ we have $V \cap A \neq \emptyset$ for every $V \in \mathcal{N}_f$;

ii) by showing that for each $f \in X$ there exists a net in A which converges to f.

b) Choose any $f \in X$ such that $\operatorname{supp}(f)$ is uncountable (e.g., f(t) = t for all $t \in \mathbb{R}$). Note that $f \in \overline{A}$ by a). Show that no sequence in A converges to f.

Exercise 3. Let X be a nonempty set and $A \subseteq X$. Consider a net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in X. Check that the following statements are true:

a) If $\{x_{\alpha}\}$ is eventually in A, then it is frequently in A.

b) $\{x_{\alpha}\}$ is not frequently in A if and only if it is eventually in $X \setminus A$.

c) If $\{x_{\alpha}\}$ is eventually in A, then it is not eventually in $X \setminus A$, and if $\{x_{\alpha}\}$ is eventually in $X \setminus A$, then it is not eventually in A.

Exercise 4. Let X be a topological space and let $\{x_{\alpha}\}_{\alpha \in \Lambda}$ be a universal net in X (so it is eventually in A or eventually in $X \setminus A$ for every $A \subseteq X$).

Assume that $x \in X$ is a cluster point³ of $\{x_{\alpha}\}$, that is, $\{x_{\alpha}\}$ is frequently in V for every $V \in \mathcal{N}_x$. Check that $\{x_{\alpha}\}$ converges to x.

(This implies that if a universal net in X has some cluster points, then it converges to every of its cluster points.)

NB: We actually went through the solution of this exercise during the lecture on Jan. 23 ! If you have time, you should also have a look at Exercise 1.3.3 in Pedersen's book, to realize how Riemann-integrability can be formulated in terms of net-convergence.

¹One exercise added on the next page!

²Some authors denote the family \mathcal{N}_x by $\mathcal{O}(x)$ and call it the neighborhood filter of x. Note also that it is sometimes required that a neighborhood of a point is open, but we don't; this is essentially a matter of taste. ³Cluster points are called accumulation points in some backs

³Cluster points are called accumulation points in some books.

Exercise 5

Let X be a nonempty set and let $\{\rho_i\}_{i\in I}$ be a nonempty family of functions from X to \mathbb{R} . Consider \mathbb{R} as a topological space w.r.t. to its standard topology and let τ denote the weak topology on X determined by $\{\rho_i\}_{i\in I}$, i.e., τ is the topology on X generated by the family $\mathcal{E} = \{\rho_i^{-1}(U) : i \in I, U \text{ is an open subset of } \mathbb{R}\} \subseteq \mathcal{P}(X).$

Let $x \in X$. For $i \in I$ and $\varepsilon > 0$, set

$$V_{i,\varepsilon}(x) := \left\{ y \in X : \left| \rho_i(y) - \rho_i(x) \right| < \varepsilon \right\} \subset X.$$

Moreover, set

$$\mathcal{U}_x := \left\{ \bigcap_{k=1}^n V_{i_k, \varepsilon_k} : n \in \mathbb{N}, i_1, \dots, i_n \in I \text{ and } \varepsilon_1, \dots, \varepsilon_n > 0 \right\} \subseteq \mathcal{P}(X).$$

Show that \mathcal{U}_x is a neighborhood basis at x (for τ).