MAT4450 - Spring 2024 - Exercises - Set 13

Exercise 51

Let H be a complex Hilbert space.

a) Assume that $T \in \mathcal{B}(H)$ is normal, $g \in B_b(\operatorname{sp}(T))$ and $f \in C(\Omega)$, where Ω is a compact subset of \mathbb{C} containing $g(\operatorname{sp}(T))$.

Show that $(f \circ g)(T) = f(g(T))$.

b) Let $U \in \mathcal{B}(H)$ be unitary. Use a) to show that there exists a self-adjoint operator $\Theta \in \mathcal{B}(H)$ such that $U = \exp(i\Theta)$.

Exercise 52

Let H be a complex Hilbert space and $T \in \mathcal{B}(H)$ be normal. Let $A \mapsto P(A)$ denote the projection-valued measure associated with T (so $P(A) := 1_A^{\operatorname{sp}(T)}(T)$ for every Borel subset A of $\operatorname{sp}(T)$). Moreover, let $\lambda \in \mathbb{C}$ and set $B(\lambda, \varepsilon) := \{\lambda' \in \mathbb{C} : |\lambda' - \lambda| < \varepsilon\}$.

a) Show that

$$\lambda \in \operatorname{sp}(T) \Leftrightarrow P(B(\lambda, \varepsilon) \cap \operatorname{sp}(T)) \neq 0 \text{ for all } \varepsilon > 0$$

b) Let $\lambda \in \operatorname{sp}(T)$. Show that

 λ is an eigenvalue of $T \Leftrightarrow P(\{\lambda\}) \neq 0$,

in which case $P(\{\lambda\})$ is the orthogonal projection from H onto the eigenspace $E_{\lambda}^{T} = \ker(\lambda I - T).$

Exercise 53

Let *H* be a complex Hilbert space and (X, \mathcal{M}) be a measure space. Assume that $A \mapsto P(A)$ is a map from \mathcal{M} into $\mathcal{B}(H)$ such that P(A) is an orthogonal projection for every $A \in \mathcal{M}$, $P(\emptyset) = 0$, and P(X) = I. Consider the following conditions:

i) For every $\xi \in H$ and every sequence $\{A_j\}_{j \in \mathbb{N}}$ of pairwise disjoint sets in \mathcal{M} we have that

$$P\left(\bigcup_{j=1}^{\infty} A_j\right)\xi = \sum_{j=1}^{\infty} P(A_j)\xi.$$

ii) For every $\xi, \eta \in H$ the map $\mu_{\xi,\eta} : \mathcal{M} \to \mathbb{C}$ defined by

$$\mu_{\xi,\eta}(A) = \langle P(A)\xi, \eta \rangle \text{ for all } A \in \mathcal{M}$$

is a complex measure on (X, \mathcal{M}) .

a) Assume that i) holds. Show that ii) holds, and that $\|\mu_{\xi,\eta}\| \leq \|\xi\| \|\eta\|$ for all $\xi, \eta \in H$, where $\|\mu_{\xi,\eta}\| = |\mu_{\xi,\eta}|(\Omega)$ and $|\mu_{\xi,\eta}|$ denotes the total variation of $\mu_{\xi,\eta}$.

b) Assume that i) holds. Show that the following property is satisfied:

$$P(A \cap B) = P(A)P(B)$$
 for all $A, B \in \mathcal{M}$.

Note that we included this property in our definition of a projection-valued measure on (X, \mathcal{M}) . It follows from b) that it can be skipped in the definition.