MAT4450 - Spring 2024 - Exercises - Set 2

Exercise 6

Let X be a vector space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) and let S be a nonempty family of seminorms on X. Let τ_S denote the weak topology on X induced by S. We recall that τ_S is the weak topology on X determined by the family $\{\rho_{(\sigma,z)}\}_{(\sigma,z)\in S\times X}$ of real-valued functions given by $\rho_{(\sigma,z)}(y) := \sigma(y-z)$ for all $y \in X$.

Let $x \in X$. For $\sigma \in S$ and $\varepsilon > 0$, set $B^{\sigma}_{\varepsilon}(x) := \{y \in X : \sigma(y - x) < \varepsilon\}.$

Moreover, for $z \in X$, set $V_{(\sigma,z),\varepsilon}(x) := \{y \in X : |\sigma(y-z) - \sigma(x-z)| < \varepsilon\}.$

a) Check that for any $z \in X$ and $\varepsilon > 0$ we have

$$V_{(\sigma,x),\varepsilon}(x) = B^{\sigma}_{\varepsilon}(x) \subseteq V_{(\sigma,z),\varepsilon}(x).$$

b) If F is a finite nonempty subset of S and $\varepsilon > 0$, we set

$$B_{\varepsilon}^{F}(x) := \bigcap_{\sigma \in F} B_{\varepsilon}^{\sigma}(x) = \{ y \in X : \sigma(y - x) < \varepsilon \text{ for all } \sigma \in F \}.$$

Use Exercise 5 and part a) to show that the family

$$\mathcal{B}_x := \{B^F_{\varepsilon}(x) : F \text{ is a finite nonempty subset of } S \text{ and } \varepsilon > 0\}$$

is a neighborhood basis at x (for τ_S).

Exercise 7

Let $X = C(\mathbb{R}, \mathbb{C})$ denote the vector space of all continuous complex functions on \mathbb{R} , and let $S = \{\sigma_K : K \subseteq \mathbb{R}, K \text{ compact}\}$ be the family of seminorms on X given by

$$\sigma_K(f) := \sup\{|f(t)| : t \in K\} \quad (f \in X)$$

for each $K \subseteq \mathbb{R}, K$ compact.

Show that this family of seminorms is separating, i.e., for each $f \in X$, $f \neq 0$, there exists some $K \subseteq \mathbb{R}$, K compact, such that $\sigma_K(f) \neq 0$. (This implies that the topology on $X = C(\mathbb{R}, \mathbb{C})$ induced by this family, i.e., the topology on X of uniform convergence on compact subsets of \mathbb{R} , is Hausdorff).

Exercise 8

Let X, X' be vector spaces (over \mathbb{F}). Let S (resp. S') denote a family of seminorms on X (resp. X') and let τ (resp. τ') denote the topology on X (resp. X') induced by S (resp. S').

Let $T: X \to X'$ be a linear map, and consider T as map from (X, τ) to (X', τ') . Show that the following statements are equivalent:

- a) T is continuous.
- b) T is continuous at 0.
- c) For each $\sigma' \in S'$ there exist a nonempty finite subset F of S and M > 0 such that

$$\sigma'(T(x)) \le M \max_{\sigma \in F} \{\sigma(x)\} \text{ for all } x \in X$$

Note: An immediate consequence is that a linear functional ℓ on X is continuous (w.r.t. τ) if and only if there exist a nonempty finite subset F of S and M > 0 such that

$$|\ell(x)| \leq M \max_{\sigma \in F} \{\sigma(x)\}$$
 for all $x \in X$.

Exercise 9

Let X be topological vector space and let $\ell : X \to \mathbb{F}$ be a linear functional (where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). Show that the following conditions are equivalent:

- a) ℓ is continuous on X.
- b) ℓ is continuous at some point of X.
- c) $\sup \{ \operatorname{Re} \ell(u) \mid u \in U \} < \infty$ for some nonempty open $U \subseteq X$.
- d) $\inf \{ \operatorname{Re} \ell(u) \mid u \in U \} > -\infty \text{ for some nonempty open } U \subseteq X.$
- e) $\sup\{ |\ell(u)| \mid u \in U \} < \infty$ for some nonempty open $U \subseteq X$.

Exercise 10 Let X be an *infinite-dimensional* normed space.

a) Let U be a weakly open neighbourhood of 0 in X (i.e., $0 \in U \subseteq X$ and $U \in \tau_{\text{weak}}$). Show that U contains an infinite-dimensional subspace of X.

b) Show that the weak topology on X does not coincide with the norm topology.