MAT4450 - Spring 2024 - Exercises - Set 6

Exercise 23

Let X be a vector space (over \mathbb{F}).

a) Let A be a nonempty subset of X and set

$$\operatorname{co}(A) = \Big\{ \sum_{j=1}^{n} \lambda_j \, a_j \mid n \in \mathbb{N}, \, \lambda_1, \dots, \lambda_n \in [0, 1], \, \sum_{j=1}^{n} \lambda_j = 1, \, a_1, \dots, a_n \in A \Big\}.$$

Show that co(A), the convex hull of A, is the least convex subset of X containing A.

b) Let C be a nonempty convex subset of X. Assume that F is a face of C and K is a face of F. Show that K is a face of C.

Exercise 24

Let Ω be a compact Hausdorff space and let $\{f_n\}$ be a sequence in $C(\Omega, \mathbb{F})$ such that $\sup_{n \in \mathbb{N}} ||f_n||_{\infty} < \infty$ and $\{f_n\}$ converges to some $f \in C(\Omega, \mathbb{F})$ pointwise on Ω . Show that

$$f \in \overline{\operatorname{co}(\{f_n, n \in \mathbb{N}\})}^{\|\cdot\|_{\infty}}$$

Exercise 25 [NB: this exercise will be part of the compulsory assignment]

We recall that if C is a convex subset of a vector space, then ex(C) denotes the set of all extreme points of C.

Let H be a complex Hilbert space $\neq \{0\}$. Set

$$B := \{ \xi \in H : \|\xi\| \le 1 \} \text{ and } \mathcal{B} := \{ T \in \mathcal{B}(H) : \|T\| \le 1 \}.$$

a) Show that $ex(B) = \{\eta \in B : ||\eta|| = 1\}.$

b) Let $T \in \mathcal{B}(H)$. Assume that T or T^* is isometric.¹ Show that $T \in ex(\mathcal{B})$.

Exercise 26

Consider the Banach space $X = (L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu), \|\cdot\|_1)$ (over \mathbb{F}), where $\mathcal{B}_{\mathbb{R}}$ denotes the σ -algebra of all Borel subsets of \mathbb{R} and μ denotes the Lebesgue measure on $\mathcal{B}_{\mathbb{R}}$.

Consider $B := \{f \in X : ||f||_1 \le 1\}$, which is clearly convex.

a) Show that the convex ball B has no extreme points.

Hint. Assume for contradiction that there exists some $f \in B$. Show first that $||f||_1 = 1$. Then consider the continuous function $F(t) := \int_{(-\infty,t]} |f| d\mu$, $t \in \mathbb{R}$.

b) Deduce that there is no topology on X making it a locally convex Hausdorff topological vector space such that B is compact. Explain why this implies that $(L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu), \|\cdot\|_1)$ can not be isomorphic to the dual space of $(L^{\infty}(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu), \|\cdot\|_{\infty})$.

Exercise 27

Let (X, τ) be a locally convex Hausdorff topological vector space and K be a nonempty compact convex subset of X.

Let $\varphi \in (X, \tau)^*$ and set $m := \inf \operatorname{Re} \varphi(K), M := \sup \operatorname{Re} \varphi(K), s := \sup |\varphi(K)|.$

Show that there exist $x, y, z \in ex(K)$ such that

$$\operatorname{Re} \varphi(x) = m, \ \operatorname{Re} \varphi(y) = M, \ |\varphi(z)| = s$$

¹By T^* we mean here the (Hilbert) adjoint operator of T as defined for a bounded operator on a Hilbert space.