MAT4450 - Spring 2020 - Exercises - Set 8

Exercise 32

Consider the commutative Banach algebra $\mathcal{A} = C(\Omega, \mathbb{F})$, where Ω is a compact Hausdorff space. Let $\omega_0 \in \Omega$ and define $\varphi : \mathcal{A} \to \mathbb{F}$ by $\varphi(f) = f(\omega_0)$ for $f \in \mathcal{A}$.

a) Check that φ is a continuous algebra-homomorphism from \mathcal{A} into \mathbb{F} (considered as a Banach algebra) satisfying $\|\varphi\| = 1$.

b) Consider the closed ideal of \mathcal{A} given by $\mathcal{J} = \ker \varphi$. Show that the Banach algebra \mathcal{A}/\mathcal{J} is isometrically isomorphic to \mathbb{F} .

Note: Two algebras are said to be *isomorphic* if there exists a bijective algebra-homomorphism between them; the inverse map is then necessarily an algebra-homomorphism, as one can easily check. Two Banach algebras are said to be *isomorphic* if there exists a bijective continuous algebra-homomorphism between them; the inverse map is then an algebra-homomorphism which is continuous (as follows from the open mapping theorem). Note that such an isomorphism between Banach algebras is not isometric in general.

Exercise 33

Let \mathcal{A} be a non-unital Banach algebra over \mathbb{F} . Set $\mathcal{A} = \{(a, \alpha) \mid a \in \mathcal{A}, \alpha \in \mathbb{F}\}$ and define addition, multiplication by scalars and product by

$$(a, \alpha) + (b, \beta) = (a + b, \alpha + \beta),$$

$$\lambda (a, \alpha) = (\lambda a, \lambda \alpha),$$

$$(a, \alpha)(a, \beta) = (ab + \alpha b + \beta a, \alpha \beta)$$

for $(a, \alpha), (b, \beta) \in \widetilde{\mathcal{A}}$ and $\lambda \in \mathbb{F}$. Check for yourself that $\widetilde{\mathcal{A}}$ becomes a unital algebra with unit $\tilde{e} := (0, 1)$, and that the map $(a, \alpha) \mapsto \alpha$ is an algebra-homomorphism from $\widetilde{\mathcal{A}}$ into \mathbb{F} , with kernel equal to $\mathcal{A}_0 := \{(a, 0) \mid a \in \mathcal{A}\}.$

It is usual to identify \mathcal{A} with the ideal \mathcal{A}_0 and to write $a + \alpha \tilde{e}$ instead of (a, α) .

We define a norm on $\widetilde{\mathcal{A}}$ by

$$\|a + \alpha \tilde{e}\| := \|a\| + |\alpha|$$

for every $a + \alpha \tilde{e} \in \widetilde{\mathcal{A}}$.

Verify that $\widetilde{\mathcal{A}}$ becomes a unital Banach algebra w.r.t. $\|\cdot\|$, containing \mathcal{A} as a closed ideal. Check also that the quotient Banach algebra $\widetilde{\mathcal{A}}/\mathcal{A}$ is isometrically isomorphic to \mathbb{F} .

Note: From now on, we will use the convention that a unital Banach algebra \mathcal{A} always mean a Banach algebra over \mathbb{C} having a unit $1_{\mathcal{A}}$ such that $||1_{\mathcal{A}}|| = 1$.

Exercise 34

Let \mathcal{A} be a unital Banach algebra. Recall that $GL(\mathcal{A}) = \{ a \in \mathcal{A} : a \text{ is invertible in } \mathcal{A} \}.$

a) Let $a \in GL(\mathcal{A})$ and note that $0 \notin sp_{\mathcal{A}}(a)$. Show that

$$\operatorname{sp}_{\mathcal{A}}(a^{-1}) = \left\{ \lambda^{-1} \mid \lambda \in \operatorname{sp}_{\mathcal{A}}(a) \right\}.$$

b) Let \mathcal{B} be unital Banach algebra and assume that $\phi : \mathcal{A} \to \mathcal{B}$ is an algebra-isomorphism such that $\phi(1_{\mathcal{A}}) = \phi(1_{\mathcal{B}})$. Show that $\operatorname{sp}_{\mathcal{A}}(a) = \operatorname{sp}_{\mathcal{B}}(\phi(a))$ for all $a \in \mathcal{A}$.

Exercise 35

Consider the complex Hilbert space $H = L^2([0,1], \mathcal{B}_{[0,1]}), \mu)$, where μ denotes the Lebesgue measure on the Borel σ -algebra n $\mathcal{B}_{[0,1]}$.

Set $\mathcal{A} := \mathcal{B}(H)$, and let $M \in \mathcal{A}$ denote the multiplication operator given by

M(g)](t) = tg(t) for all $g \in H$ and $t \in [0, 1]$.

Show that $\operatorname{sp}_{\mathcal{A}}(M) = [0, 1]$ and that M has no eigenvalues.

Exercise 36

Let S be a nonempty set and consider the unital Banach algebra $\mathcal{A} = \ell^{\infty}(S, \mathbb{C})$. Let $f \in \mathcal{A}$. Show that $\operatorname{sp}(f) = \overline{f(S)}$.