
MAT4450 - Spring 2024 - Solutions of exercises - Set 1

Exercise 1. Let X be a topological space which is first countable, that is, every x ∈ X has a
countable neighborhood basis. Let A ⊆ X and x ∈ X. Then we have that

x ∈ A ⇔ there exists a sequence {xn} in A such that xn → x as n→∞.

We know that in any topological space the implication (⇐) holds for a net, hence for a
sequence. So it suffices to show that (⇒) holds. Assume that x ∈ A. Let {Bn : n ∈ N} denote
a neighborhood basis at x. By replacing each Bn by ∩nj=1Bj if necessary, we may assume that
Bn+1 ⊆ Bn for each n ∈ N. Now, for each n ∈ N, we have that Bn ∩A 6= ∅, so we may pick
xn ∈ Bn ∩A. Consider now any V ∈ Nx. Choosing n0 such that Bn0 ⊆ V , we get that
xn ∈ Bn ⊆ Bn0 ⊆ V , hence xn ∈ V , for every n ≥ n0. Thus, xn → x as n→∞, as desired.

Exercise 2. Let X consists of all real-valued functions on R and equip it with the topology of
pointwise convergence. We recall that a neighborhood basis Bf at f ∈ X is given by

Bf = {Vf, S, ε : S is a finite subset of R, ε > 0},

where Vf, S, ε := {g ∈ X : |f(s)− g(s)| < ε for every s ∈ S}. For h ∈ X we set
supp(h) := {t ∈ R : h(t) 6= 0}. Moreover, we set A := {h ∈ X : supp(h) is finite}.

a) We show that A = X in two different ways:

i) Let f ∈ X. Consider V ∈ Nf . We may then find some Vf, S, ε ∈ Bf such that Vf, S, ε ⊆ V .
Define fS ∈ A by fS(t) = f(t) when t ∈ S, and fS(t) = 0 when t 6∈ S. Then we clearly get that
fS ∈ (Vf,S, ε ∩A) ⊆ (V ∩A), so V ∩A 6= ∅. Thus, f ∈ A.

ii) Let f ∈ X. For every finite subset S of X, i.e., S ∈ Pfin(X), define fS as above.
Considering Λ := Pfin(X) as a directed set w.r.t. inclusion, we get a net {fS}S∈Λ in A, which
converges to f :

Indeed, let V ∈ Nf . Choose Vf, S, ε ∈ Bf such that Vf, S, ε ⊆ V . Then for every S′ ∈ Λ such
that S ⊆ S′ we have that fS′ ∈ Vf, S, ε ⊆ V (since |f(s)− fS′(s)| = |f(s)− f(s)| = 0 < ε for all
s ∈ S). Thus, again, f ∈ A.

b) Let f be any function in X = A such that supp(f) is uncountable. Then there is no
sequence in A which converges to f .

Assume (for contradiction) that there exists a sequence {fn} in A such that fn → f as
n→∞. Set T := ∪n∈N supp(fn). Then T is countable. Moreover, supp(f) ⊆ T . Indeed, let
x ∈ supp(f). We may then find n ∈ N such that |f(x)− fn(x)| < |f(x)|/2. This implies that
|fn(x)| > |f(x)|/2 > 0. Thus, x ∈ supp(fn) ⊆ T . Since T is countable, we get that supp(f) is
countable, contradicting the hypothesis.

Exercise 3. Let X be a nonempty set and A ⊆ X. Consider a net {xα}α∈Λ in X. Then the
following statements are true.

a) If {xα} is eventually in A, then it is frequently in A:

Assume {xα} is eventually in A, i.e., there exists α0 ∈ Λ such that xα ∈ A for all α ≥ α0.
Let β ∈ Λ. We may then find γ ∈ Λ such that γ ≥ α0 and γ ≥ β. This gives that xγ ∈ A.
Hence, {xα} is frequently in A.

b) {xα} is not frequently in A if and only if it is eventually in X \A:

We have that {xα} is not frequently in A if and only if there exists some α0 ∈ Λ such that
xβ 6∈ A for all β ≥ α0, if and only if {xα} is eventually in X \A.
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c) If {xα} is eventually in A, then it is not eventually in X \A, and if {xα} is eventually in
X \A, then it is not eventually in A:

If {xα} is eventually in X \A, then it follows from b) that {xα} is not frequently in A, and
then a) gives that {xα} is not eventually in A. This shows that the second assertion holds for
every subset A of X. Applying this assertion to the subset X \A, we get that the first
assertion holds too.

Exercise 4. Let X be a topological space and let {xα}α∈Λ be a universal net in X (so it is
eventually in A or eventually in X \A for every A ⊆ X). Assume that x ∈ X is a cluster point
of {xα}, that is, {xα} is frequently in V for every V ∈ Nx.

Then {xα} converges to x:

Consider V ∈ Nx. Then {xα} is frequently in V , so, using b) in the previous exercise, we get
that {xα} is not eventually in X \ V . By universality of the net {xα}, we get that it is
eventually in V . Thus, xα → x.

About Exercise 1.3.3 in Pedersen’s book.

For each λ let us denote by xλ the sum defined on the left (using the inf) and by yλ the sum
defined on the right (using the sup). Then we clearly have that

m(b− a) ≤ xλ ≤ yλ ≤M(b− a),

where m := inf{f(x) : a ≤ x ≤ b}, M := sup{f(x) : a ≤ x ≤ b}. Moreover, one checks that the
net {xλ} is non-decreasing, while {yλ} is non-increasing. It follows that both these nets are
convergent, with

m(b− a) ≤ lim
λ
xλ ≤ lim

λ
yλ ≤M(b− a).

Now, if one says that the function f is R-integrable when limλ xλ = limλ yλ, then one has to
work a bit to show that this is equivalent to f being Riemann-integrable. As this is somewhat
outside the scope of this course, we skip the details (some of which can be found in Enstad’s
notes).

Exercise 5

Let X be a nonempty set and let {ρi}i∈I be a nonempty family of functions from X to R.
Consider R as a topological space w.r.t. to its standard topology and let τ denote the weak
topology on X determined by {ρi}i∈I , i.e., τ is the topology on X generated by the family
E = {ρ−1

i (U) : i ∈ I, U is an open subset of R} ⊆ P(X).

Let x ∈ X. For i ∈ I and ε > 0, set Vi, ε(x) =
{
y ∈ X : |ρi(y)− ρi(x)| < ε

}
⊆ X .

Moreover, set Ux =
{⋂n

k=1 Vik, εk(x) : n ∈ N, i1, . . . , in ∈ I and ε1, . . . , εn > 0
}
⊆ P(X) .

Then Ux is a neighborhood basis at x (for τ):

For i ∈ I, a ∈ R, ε > 0, set

Bi, a, ε := ρ−1
i ((a− ε, a+ ε)) = {y ∈ X : |ρi(y)− a| < ε}.

Since {(a− ε, a+ ε) : a ∈ R, ε > 0} is a basis for the standard topology on R, it follows readily
that τ is generated by the family E ′ = {Bi,a, ε : i ∈ I, a ∈ R, ε > 0}. A basis B for τ is then
given by the family of all finite intersections of sets in E ′, and a neighborhood basis Bx at x for
τ is therefore given by the family Bx = {B ∈ B : x ∈ B}. This means that W ∈ Nx if and only
if there exists some B ∈ Bx such that B ⊆W . To show that Ux is a neighborhood basis at x,
i.e., that W ∈ Nx if and only if there exists some U ∈ Ux such that U ⊆W , it therefore suffices
to show that the following two assertions hold:
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1) For every U ∈ Ux, there exists B ∈ Bx such that B ⊆ U .

2) For every B ∈ Bx, there exists U ∈ Ux such that U ⊆ B.

Since Vi,ε(x) = Bi, ρi(x), ε, we have that Ux ⊆ Bx, so it is obvious that 1) holds.

On the other hand, let B ∈ Bx, so B =
⋂n
k=1Bik, ak, εk for some n ∈ N, i1, . . . , in ∈ I,

a1, . . . , an ∈ R and ε1, . . . , εn > 0. Since x ∈ B we have |ρik(x)− ak| < εk for each k = 1, . . . , n,
so δk := εk − |ρik(x)− ak| > 0 for each k = 1, . . . , n. Set now U := ∩nk=1Vik, δk(x) ∈ Ux. Then
we have U ⊆ B. Indeed, if y ∈ U , then we have

|ρik(y)− ak| ≤ |ρik(y)− ρik(x)|+ |ρik(x)− ak| < δk + |ρik(x)− ak| = εk

for every k = 1, . . . , n, showing that y ∈ B, as desired. This shows that 2) holds.
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