MAT4450 - Spring 2024 - Solutions of exercises - Set 10

Exercise 43 [= Exercise 4.1.13 in Pedersen's book]

Let \mathcal{A} be a unital Banach algebra. Recall that for each $a \in \mathcal{A}$, $\exp(a) \in \mathcal{A}$ is given by

$$\exp(a) = \sum_{n=0}^{\infty} \frac{1}{n!} a^n$$

as this power series in a is absolutely convergent in A.

Assume that $a, b \in \mathcal{A}$ commute, i.e., ab = ba. Then we have that

$$\exp(a+b) = \exp(a)\exp(b).$$

It is not difficult to give an informal proof of this fact if one is willing to overlook the problem of interchanging the order of summation in a double infinite sum of elements in \mathcal{A} . Indeed, on one side, using the binomial formula, we get

$$\exp(a+b) = \sum_{n=0}^{\infty} \frac{1}{n!} (a+b)^n$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} a^k b^{n-k}$$

On the other side, we have

$$\begin{split} \exp(a) \exp(b) &= \Big(\sum_{k=0}^{\infty} \frac{1}{k!} a^k\Big) \Big(\sum_{m=0}^{\infty} \frac{1}{m!} b^m\Big) \\ &= \sum_{k=0}^{\infty} \Big(\frac{1}{k!} a^k \left(\sum_{m=0}^{\infty} \frac{1}{m!} b^m\right)\Big) \\ &= \sum_{k=0}^{\infty} \Big(\frac{1}{k!} a^k \left(\sum_{n=k}^{\infty} \frac{1}{(n-k)!} b^{n-k}\right)\Big) \\ &= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{1}{k!(n-k)!} a^k b^{n-k}. \end{split}$$

If we are allowed to change the order of summation in these sums, we see that both sides are equal. In order to formalize this, let $\varphi \in \mathcal{A}^*$. By continuity, we get that

$$\varphi\big(\exp(a+b)\big) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \varphi(a^k b^{n-k}),$$

while

$$\varphi\big(\exp(a)\exp(b)\big) = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{1}{k!(n-k)!} \,\varphi(a^k b^{n-k})$$

Set $D := \{(n,k) : n \in \mathbb{N} \cup \{0\}, k \in \{0, \dots, n\}\} = \{(n,k) : k \in \mathbb{N} \cup \{0\}, n \in \{k, k+1, \dots\}\}$, and define $f : D \to \mathbb{C}$ by

$$f(n,k) := \frac{1}{k!(n-k)!} \varphi(a^k b^{n-k}).$$

Then, using Tonelli's theorem, we get that

$$\sum_{(n,k)\in D} |f(n,k)| \le \|\varphi\| \sum_{(n,k)\in D} \frac{1}{k!(n-k)!} \|a\|^k \|b\|^{n-k}$$
$$= \|\varphi\| \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \|a\|^k \|b\|^{n-k}$$
$$= \|\varphi\| \sum_{n=0}^{\infty} \frac{1}{n!} (\|a\| + \|b\|)^n$$
$$= \|\varphi\| \exp \left(\|a\| + \|b\|\right) < \infty.$$

Thus, we may now use Fubini's theorem and obtain that

$$\sum_{(n,k)\in D} f(n,k) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} f(n,k) = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} f(n,k).$$

This shows that $\varphi(\exp(a+b)) = \varphi(\exp(a)\exp(b))$. Since this holds for every $\varphi \in \mathcal{A}^*$, and \mathcal{A}^* separates \mathcal{A} , we get that $\exp(a+b) = \exp(a)\exp(b)$, as desired.

It follows that $\exp(a) \in \operatorname{GL}(\mathcal{A})$ for every $a \in \mathcal{A}$:

Indeed, since -a commutes with a, we get that

$$\exp(a)\exp(-a) = \exp(a-a) = \exp(0) = I = \exp(-a+a) = \exp(-a)\exp(a),$$

hence that $\exp(a)$ is invertible in \mathcal{A} , with $\exp(a)^{-1} = \exp(-a)$, for every $a \in \mathcal{A}$.

Exercise 41

Consider the unital commutative Banach algebra $\mathcal{A} = \ell^1(\mathbb{Z}, \mathbb{C})$ (w.r.t. the $\|\cdot\|_1$ -norm). Set $\mathcal{B} := \{f \in \mathcal{A} : f(n) = 0 \text{ for all } n < 0\}.$

a) We have that \mathcal{B} is a norm-closed subalgebra of \mathcal{A} which contains the unit of \mathcal{A} (hence \mathcal{B} is also a unital commutative Banach algebra):

It is immediate that \mathcal{B} is a subspace of \mathbb{C} . Recall that for each $k \in \mathbb{Z}$, $\delta_k \in \mathcal{A}$ is defined by $\delta_k(j) = 1$ if j = k, while $\delta_k(j) = 0$ otherwise. Then it is clear that $f = \sum_{k \in \mathbb{Z}} f(k)\delta_k$ (w.r.t. $\|\cdot\|_1$) for all $f \in \mathcal{A}$.

Hence, if $f \in \mathcal{B}$, we get that $f = \sum_{k=0}^{\infty} f(k) \delta_k$ (w.r.t. $\|\cdot\|_1$). It follows readily that

$$\mathcal{B} = \overline{\operatorname{span}\{\delta_k : k \in \mathbb{N} \cup \{0\}\}}^{\|\cdot\|_1},$$

so \mathcal{B} is closed in \mathcal{A} . Moreover, as $\delta_k * \delta_l = \delta_{k+l}$ for all k, l, it is also straightforward to deduce that \mathcal{B} is closed under the convolution product. Finally, the unit of \mathcal{A} is δ_0 , which obviously belongs to \mathcal{B} .

b) Let $\lambda \in \mathbb{D} := \{z \in \mathbb{C} : |z| \leq 1\}$. Then the map $\gamma_{\lambda} : \mathcal{B} \to \mathbb{C}$ given by

$$\gamma_{\lambda}(f) = \sum_{n=0}^{\infty} f(n)\lambda^n$$

for all $f \in \mathcal{B}$ is well-defined and belongs to $\widehat{\mathcal{B}}$:

Let $f \in \mathcal{B}$. Since $\sum_{n=0}^{\infty} |f(n)\lambda^n| \leq \sum_{n=0}^{\infty} |f(n)| = ||f||_1 < \infty$, the complex series $\sum_{n=0}^{\infty} f(n)\lambda^n$ is absolutely convergent, hence convergent. Thus $\gamma_{\lambda}(f)$ makes sense, so we get that $\gamma_{\lambda} : \mathcal{B} \to \mathbb{C}$ is well-defined.

We have now to check that γ_{λ} is linear, bounded, multiplicative and nonzero. Linearity is easy. Since

$$|\gamma_{\lambda}(f)| \le \sum_{n=0}^{\infty} |f(n)| = ||f||_1$$

for all $f \in \mathcal{B}$, γ_{λ} is bounded. To show multiplicativity, consider first $k, l \in \mathbb{N} \cup \{0\}$. Then

$$\gamma_{\lambda}(\delta_k * \delta_l) = \gamma_{\lambda}(\delta_{k+l}) = \lambda^{k+l} = \lambda^k \lambda^l = \gamma_{\lambda}(\delta_k) \gamma_{\lambda}(\delta_l).$$

It follows that γ_{λ} is multiplicative on the subalgebra $\mathcal{B}_0 := \operatorname{span}\{\delta_k : k \in \mathbb{N}\}$. By density of \mathcal{B}_0 in \mathcal{B} and continuity of γ_{λ} , we get that γ_{λ} is multiplicative on \mathcal{B} . Finally, $\gamma_{\lambda}(\delta_0) = \lambda^0 = 1$, so $\gamma_{\lambda} \neq 0$.

c) The map $\lambda \mapsto \gamma_{\lambda}$ is a homeomorphism from \mathbb{D} onto $\widehat{\mathcal{B}}$:

• Injectivity: Assume $\gamma_{\lambda} = \gamma_{\mu}$ for $\lambda, \mu \in \mathbb{D}$. Then $\lambda = \gamma_{\lambda}(\delta_1) = \gamma_{\mu}(\delta_1) = \mu$.

• Surjectivity: Let $\gamma \in \widehat{\mathcal{B}}$. Set $\lambda = \gamma(\delta_1) \in \mathbb{C}$. Then $|\lambda| = |\gamma(\delta_1)| \leq ||\gamma|| ||\delta_1||_1 = 1$. Sorry o $\lambda \in \mathbb{D}$. Further, since γ is continuous and $\delta_n = (\delta_1)^n$ for all n, we get that

$$\gamma(f) = \sum_{n=0}^{\infty} f(n)\gamma(\delta_n) = \sum_{n=0}^{\infty} f(n)\gamma(\delta_1)^n = \sum_{n=0}^{\infty} f(n)\lambda^n = \gamma_{\lambda}(f)$$

for all $f \in \mathcal{B}$, so $\gamma = \gamma_{\lambda}$.

• We have shown that the map $\lambda \mapsto \gamma_{\lambda}$ is a bijection ϕ from \mathbb{D} onto $\widehat{\mathcal{B}}$, with inverse $\psi : \widehat{\mathcal{B}} \to \mathbb{D}$ given by $\gamma \mapsto \gamma(\delta_1)$. If $\{\gamma_{\alpha}\}$ is a net in $\widehat{\mathcal{B}}$ converging to $\gamma \in \widehat{\mathcal{B}}$, then

 $\psi(\gamma_{\alpha}) = \gamma_{\alpha}(\delta_1) \to \gamma(\delta_1) = \psi(\gamma)$. Thus, ψ is continuous. Since $\widehat{\mathcal{B}}$ is compact and \mathbb{D} is Hausdorff, we get that $\phi = \psi^{-1}$ is continuous too. Hence ϕ is an homeomorphism, as desired.

Next, identifying $\widehat{\mathcal{B}}$ with \mathbb{D} , we get that the Gelfand transform of \mathcal{B} is the map $\Gamma : \mathcal{B} \to C(\mathbb{D})$ given by

$$[\Gamma(f)](\lambda) = \sum_{n=0}^{\infty} f(n)\lambda^n \text{ for } f \in \mathcal{B} \text{ and } \lambda \in \mathbb{D}$$

Indeed, for all $f \in \mathcal{B}$ and $\lambda \in \mathbb{D}$, we get that

$$\Gamma(f)](\gamma_{\lambda}) = \gamma_{\lambda}(f) = \sum_{n=0}^{\infty} f(n)\lambda^{n}.$$

Thus, by identifying λ with γ_{λ} , we obtain the formula above.

It follows that Γ is one-to-one: Indeed, if $\Gamma(f_1) = \Gamma(f_2)$ for $f_1, f_2 \in \mathcal{B}$, then we get that

$$\sum_{n=0}^{\infty} f_1(n)\lambda^n = \sum_{n=0}^{\infty} f_2(n)\lambda^n$$

for all $\lambda \in \mathbb{D}$. By the uniqueness of a power series expansion around zero, we get that $f_1(n) = f_2(n)$ for all $n \ge 0$, i.e., $f_1 = f_2$.

The range of Γ may be decribed as the set of continuous complex functions on \mathbb{D} having an absolutely convergent power series expansion around zero valid in \mathbb{D} , i.e., which are analytic in \mathbb{D}^{o} . It follows that $\Gamma(\mathcal{B})$ is the disk algebra $\mathcal{A}(\mathbb{D})$.