
MAT4450 - Spring 2024 - Solutions of exercises - Set 10

Exercise 43 [= Exercise 4.1.13 in Pedersen’s book]

Let A be a unital Banach algebra. Recall that for each a ∈ A, exp(a) ∈ A is given by

exp(a) =
∞∑
n=0

1

n!
an

as this power series in a is absolutely convergent in A.

Assume that a, b ∈ A commute, i.e., ab = ba. Then we have that

exp(a+ b) = exp(a) exp(b).

It is not difficult to give an informal proof of this fact if one is willing to overlook the problem of
interchanging the order of summation in a double infinite sum of elements in A. Indeed, on one
side, using the binomial formula, we get

exp(a+ b) =
∞∑
n=0

1

n!
(a+ b)n

=

∞∑
n=0

n∑
k=0

1

k!(n− k)!
akbn−k

On the other side, we have

exp(a) exp(b) =
( ∞∑
k=0

1

k!
ak
)( ∞∑

m=0

1

m!
bm
)

=

∞∑
k=0

( 1

k!
ak
( ∞∑
m=0

1

m!
bm
))

=

∞∑
k=0

( 1

k!
ak
( ∞∑
n=k

1

(n− k)!
bn−k

))
=

∞∑
k=0

∞∑
n=k

1

k!(n− k)!
akbn−k.

If we are allowed to change the order of summation in these sums, we see that both sides are
equal. In order to formalize this, let ϕ ∈ A∗. By continuity, we get that

ϕ
(

exp(a+ b)
)

=

∞∑
n=0

n∑
k=0

1

k!(n− k)!
ϕ(akbn−k),

while

ϕ
(

exp(a) exp(b)
)

=
∞∑
k=0

∞∑
n=k

1

k!(n− k)!
ϕ(akbn−k).

Set D :=
{

(n, k) : n ∈ N ∪ {0}, k ∈ {0, . . . , n}
}

=
{

(n, k) : k ∈ N ∪ {0}, n ∈ {k, k + 1, . . .}
}

, and
define f : D → C by

f(n, k) :=
1

k!(n− k)!
ϕ(akbn−k).
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Then, using Tonelli’s theorem, we get that∑
(n,k)∈D

|f(n, k)| ≤ ‖ϕ‖
∑

(n,k)∈D

1

k!(n− k)!
‖a‖k‖b‖n−k

= ‖ϕ‖
∞∑
n=0

n∑
k=0

1

k!(n− k)!
‖a‖k‖b‖n−k

= ‖ϕ‖
∞∑
n=0

1

n!
(‖a‖+ ‖b‖)n

= ‖ϕ‖ exp
(
‖a‖+ ‖b‖

)
<∞.

Thus, we may now use Fubini’s theorem and obtain that

∑
(n,k)∈D

f(n, k) =

∞∑
n=0

n∑
k=0

f(n, k) =

∞∑
k=0

∞∑
n=k

f(n, k).

This shows that ϕ
(

exp(a+ b)
)

= ϕ
(

exp(a) exp(b)
)
. Since this holds for every ϕ ∈ A∗, and A∗

separates A, we get that exp(a+ b) = exp(a) exp(b), as desired.

It follows that exp(a) ∈ GL(A) for every a ∈ A :

Indeed, since −a commutes with a, we get that

exp(a) exp(−a) = exp(a− a) = exp(0) = I = exp(−a+ a) = exp(−a) exp(a),

hence that exp(a) is invertible in A, with exp(a)−1 = exp(−a), for every a ∈ A.

Exercise 41

Consider the unital commutative Banach algebra A = `1(Z,C) (w.r.t. the ‖ · ‖1-norm).
Set B := {f ∈ A : f(n) = 0 for all n < 0}.

a) We have that B is a norm-closed subalgebra of A which contains the unit of A (hence B is also
a unital commutative Banach algebra):

It is immediate that B is a subspace of C. Recall that for each k ∈ Z, δk ∈ A is defined by
δk(j) = 1 if j = k, while δk(j) = 0 otherwise. Then it is clear that f =

∑
k∈Z f(k)δk (w.r.t. ‖ · ‖1)

for all f ∈ A.
Hence, if f ∈ B, we get that f =

∑∞
k=0 f(k)δk (w.r.t. ‖ · ‖1). It follows readily that

B = span{δk : k ∈ N ∪ {0}} ‖·‖1 ,

so B is closed in A. Moreover, as δk ∗ δl = δk+l for all k, l, it is also straightforward to deduce that
B is closed under the convolution product. Finally, the unit of A is δ0, which obviously belongs to
B.

b) Let λ ∈ D := {z ∈ C : |z| ≤ 1}. Then the map γλ : B → C given by

γλ(f) =
∞∑
n=0

f(n)λn

for all f ∈ B is well-defined and belongs to B̂ :
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Let f ∈ B. Since
∑∞

n=0 |f(n)λn| ≤
∑∞

n=0 |f(n)| = ‖f‖1 <∞, the complex series
∑∞

n=0 f(n)λn is
absolutely convergent, hence convergent. Thus γλ(f) makes sense, so we get that γλ : B → C is
well-defined.

We have now to check that γλ is linear, bounded, multiplicative and nonzero. Linearity is easy.
Since

|γλ(f)| ≤
∞∑
n=0

|f(n)| = ‖f‖1

for all f ∈ B, γλ is bounded. To show multiplicativity, consider first k, l ∈ N ∪ {0}. Then

γλ(δk ∗ δl) = γλ(δk+l) = λk+l = λkλl = γλ(δk)γλ(δl).

It follows that γλ is multiplicative on the subalgebra B0 := span{δk : k ∈ N}. By density of B0 in
B and continuity of γλ, we get that γλ is multiplicative on B. Finally, γλ(δ0) = λ0 = 1, so γλ 6= 0.

c) The map λ 7→ γλ is a homeomorphism from D onto B̂ :

• Injectivity: Assume γλ = γµ for λ, µ ∈ D. Then λ = γλ(δ1) = γµ(δ1) = µ.

• Surjectivity: Let γ ∈ B̂. Set λ = γ(δ1) ∈ C. Then |λ| = |γ(δ1)| ≤ ‖γ‖ ‖δ1‖1 = 1. Sorry o λ ∈ D.
Further, since γ is continuous and δn = (δ1)

n for all n, we get that

γ(f) =

∞∑
n=0

f(n)γ(δn) =

∞∑
n=0

f(n)γ(δ1)
n =

∞∑
n=0

f(n)λn = γλ(f)

for all f ∈ B, so γ = γλ.

• We have shown that the map λ 7→ γλ is a bijection φ from D onto B̂, with inverse ψ : B̂ → D
given by γ 7→ γ(δ1). If {γα} is a net in B̂ converging to γ ∈ B̂, then
ψ(γα) = γα(δ1)→ γ(δ1) = ψ(γ). Thus, ψ is continuous. Since B̂ is compact and D is Hausdorff,
we get that φ = ψ−1 is continuous too. Hence φ is an homeomorphism, as desired.

Next, identifying B̂ with D, we get that the Gelfand transform of B is the map Γ : B → C(D) given
by

[Γ(f)](λ) =

∞∑
n=0

f(n)λn for f ∈ B and λ ∈ D

Indeed, for all f ∈ B and λ ∈ D, we get that

Γ(f)](γλ) = γλ(f) =
∞∑
n=0

f(n)λn.

Thus, by identifying λ with γλ, we obtain the formula above.

It follows that Γ is one-to-one: Indeed, if Γ(f1) = Γ(f2) for f1, f2 ∈ B, then we get that

∞∑
n=0

f1(n)λn =

∞∑
n=0

f2(n)λn

for all λ ∈ D. By the uniqueness of a power series expansion around zero, we get that
f1(n) = f2(n) for all n ≥ 0, i.e., f1 = f2.

The range of Γ may be decribed as the set of continuous complex functions on D having an
absolutely convergent power series expansion around zero valid in D, i.e., which are analytic in
Do. It follows that Γ(B) is the disk algebra A(D).
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