MAT4450-Spring 2024-Solutions of exercises - Set 10

Exercise 43 [= Exercise 4.1.13 in Pedersen's book]
Let \mathcal{A} be a unital Banach algebra. Recall that for each $a \in \mathcal{A}, \exp (a) \in \mathcal{A}$ is given by

$$
\exp (a)=\sum_{n=0}^{\infty} \frac{1}{n!} a^{n}
$$

as this power series in a is absolutely convergent in \mathcal{A}.
Assume that $a, b \in \mathcal{A}$ commute, i.e., $a b=b a$. Then we have that

$$
\exp (a+b)=\exp (a) \exp (b) .
$$

It is not difficult to give an informal proof of this fact if one is willing to overlook the problem of interchanging the order of summation in a double infinite sum of elements in \mathcal{A}. Indeed, on one side, using the binomial formula, we get

$$
\begin{aligned}
\exp (a+b) & =\sum_{n=0}^{\infty} \frac{1}{n!}(a+b)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} a^{k} b^{n-k}
\end{aligned}
$$

On the other side, we have

$$
\begin{aligned}
\exp (a) \exp (b) & =\left(\sum_{k=0}^{\infty} \frac{1}{k!} a^{k}\right)\left(\sum_{m=0}^{\infty} \frac{1}{m!} b^{m}\right) \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{k!} a^{k}\left(\sum_{m=0}^{\infty} \frac{1}{m!} b^{m}\right)\right) \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{k!} a^{k}\left(\sum_{n=k}^{\infty} \frac{1}{(n-k)!} b^{n-k}\right)\right) \\
& =\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{1}{k!(n-k)!} a^{k} b^{n-k} .
\end{aligned}
$$

If we are allowed to change the order of summation in these sums, we see that both sides are equal. In order to formalize this, let $\varphi \in \mathcal{A}^{*}$. By continuity, we get that

$$
\varphi(\exp (a+b))=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \varphi\left(a^{k} b^{n-k}\right),
$$

while

$$
\varphi(\exp (a) \exp (b))=\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{1}{k!(n-k)!} \varphi\left(a^{k} b^{n-k}\right) .
$$

Set $D:=\{(n, k): n \in \mathbb{N} \cup\{0\}, k \in\{0, \ldots, n\}\}=\{(n, k): k \in \mathbb{N} \cup\{0\}, n \in\{k, k+1, \ldots\}\}$, and define $f: D \rightarrow \mathbb{C}$ by

$$
f(n, k):=\frac{1}{k!(n-k)!} \varphi\left(a^{k} b^{n-k}\right) .
$$

Then, using Tonelli's theorem, we get that

$$
\begin{aligned}
\sum_{(n, k) \in D}|f(n, k)| & \leq\|\varphi\| \sum_{(n, k) \in D} \frac{1}{k!(n-k)!}\|a\|^{k}\|b\|^{n-k} \\
& =\|\varphi\| \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!}\|a\|^{k}\|b\|^{n-k} \\
& =\|\varphi\| \sum_{n=0}^{\infty} \frac{1}{n!}(\|a\|+\|b\|)^{n} \\
& =\|\varphi\| \exp (\|a\|+\|b\|)<\infty .
\end{aligned}
$$

Thus, we may now use Fubini's theorem and obtain that

$$
\sum_{(n, k) \in D} f(n, k)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} f(n, k)=\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} f(n, k) .
$$

This shows that $\varphi(\exp (a+b))=\varphi(\exp (a) \exp (b))$. Since this holds for every $\varphi \in \mathcal{A}^{*}$, and \mathcal{A}^{*} separates \mathcal{A}, we get that $\exp (a+b)=\exp (a) \exp (b)$, as desired.

It follows that $\exp (a) \in \operatorname{GL}(\mathcal{A})$ for every $a \in \mathcal{A}:$
Indeed, since $-a$ commutes with a, we get that

$$
\exp (a) \exp (-a)=\exp (a-a)=\exp (0)=I=\exp (-a+a)=\exp (-a) \exp (a),
$$

hence that $\exp (a)$ is invertible in \mathcal{A}, with $\exp (a)^{-1}=\exp (-a)$, for every $a \in \mathcal{A}$.

Exercise 41

Consider the unital commutative Banach algebra $\mathcal{A}=\ell^{1}(\mathbb{Z}, \mathbb{C})$ (w.r.t. the $\|\cdot\|_{1}$-norm). Set $\mathcal{B}:=\{f \in \mathcal{A}: f(n)=0$ for all $n<0\}$.
a) We have that \mathcal{B} is a norm-closed subalgebra of \mathcal{A} which contains the unit of \mathcal{A} (hence \mathcal{B} is also a unital commutative Banach algebra):

It is immediate that \mathcal{B} is a subspace of \mathbb{C}. Recall that for each $k \in \mathbb{Z}, \delta_{k} \in \mathcal{A}$ is defined by $\delta_{k}(j)=1$ if $j=k$, while $\delta_{k}(j)=0$ otherwise. Then it is clear that $f=\sum_{k \in \mathbb{Z}} f(k) \delta_{k}$ (w.r.t. $\|\cdot\|_{1}$) for all $f \in \mathcal{A}$.

Hence, if $f \in \mathcal{B}$, we get that $f=\sum_{k=0}^{\infty} f(k) \delta_{k}$ (w.r.t. $\|\cdot\|_{1}$). It follows readily that

$$
\mathcal{B}=\overline{\operatorname{span}\left\{\delta_{k}: k \in \mathbb{N} \cup\{0\}\right\}}{ }^{\|\cdot\|_{1}},
$$

so \mathcal{B} is closed in \mathcal{A}. Moreover, as $\delta_{k} * \delta_{l}=\delta_{k+l}$ for all k, l, it is also straightforward to deduce that \mathcal{B} is closed under the convolution product. Finally, the unit of \mathcal{A} is δ_{0}, which obviously belongs to \mathcal{B}.
b) Let $\lambda \in \mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$. Then the map $\gamma_{\lambda}: \mathcal{B} \rightarrow \mathbb{C}$ given by

$$
\gamma_{\lambda}(f)=\sum_{n=0}^{\infty} f(n) \lambda^{n}
$$

for all $f \in \mathcal{B}$ is well-defined and belongs to $\widehat{\mathcal{B}}$:

Let $f \in \mathcal{B}$. Since $\sum_{n=0}^{\infty}\left|f(n) \lambda^{n}\right| \leq \sum_{n=0}^{\infty}|f(n)|=\|f\|_{1}<\infty$, the complex series $\sum_{n=0}^{\infty} f(n) \lambda^{n}$ is absolutely convergent, hence convergent. Thus $\gamma_{\lambda}(f)$ makes sense, so we get that $\gamma_{\lambda}: \mathcal{B} \rightarrow \mathbb{C}$ is well-defined.
We have now to check that γ_{λ} is linear, bounded, multiplicative and nonzero. Linearity is easy. Since

$$
\left|\gamma_{\lambda}(f)\right| \leq \sum_{n=0}^{\infty}|f(n)|=\|f\|_{1}
$$

for all $f \in \mathcal{B}, \gamma_{\lambda}$ is bounded. To show multiplicativity, consider first $k, l \in \mathbb{N} \cup\{0\}$. Then

$$
\gamma_{\lambda}\left(\delta_{k} * \delta_{l}\right)=\gamma_{\lambda}\left(\delta_{k+l}\right)=\lambda^{k+l}=\lambda^{k} \lambda^{l}=\gamma_{\lambda}\left(\delta_{k}\right) \gamma_{\lambda}\left(\delta_{l}\right) .
$$

It follows that γ_{λ} is multiplicative on the subalgebra $\mathcal{B}_{0}:=\operatorname{span}\left\{\delta_{k}: k \in \mathbb{N}\right\}$. By density of \mathcal{B}_{0} in \mathcal{B} and continuity of γ_{λ}, we get that γ_{λ} is multiplicative on \mathcal{B}. Finally, $\gamma_{\lambda}\left(\delta_{0}\right)=\lambda^{0}=1$, so $\gamma_{\lambda} \neq 0$.
c) The map $\lambda \mapsto \gamma_{\lambda}$ is a homeomorphism from \mathbb{D} onto $\widehat{\mathcal{B}}$:

- Injectivity: Assume $\gamma_{\lambda}=\gamma_{\mu}$ for $\lambda, \mu \in \mathbb{D}$. Then $\lambda=\gamma_{\lambda}\left(\delta_{1}\right)=\gamma_{\mu}\left(\delta_{1}\right)=\mu$.
- Surjectivity: Let $\gamma \in \widehat{\mathcal{B}}$. Set $\lambda=\gamma\left(\delta_{1}\right) \in \mathbb{C}$. Then $|\lambda|=\left|\gamma\left(\delta_{1}\right)\right| \leq\|\gamma\|\left\|\delta_{1}\right\|_{1}=1$. Sorry o $\lambda \in \mathbb{D}$. Further, since γ is continuous and $\delta_{n}=\left(\delta_{1}\right)^{n}$ for all n, we get that

$$
\gamma(f)=\sum_{n=0}^{\infty} f(n) \gamma\left(\delta_{n}\right)=\sum_{n=0}^{\infty} f(n) \gamma\left(\delta_{1}\right)^{n}=\sum_{n=0}^{\infty} f(n) \lambda^{n}=\gamma_{\lambda}(f)
$$

for all $f \in \mathcal{B}$, so $\gamma=\gamma_{\lambda}$.

- We have shown that the map $\lambda \mapsto \gamma_{\lambda}$ is a bijection ϕ from \mathbb{D} onto $\widehat{\mathcal{B}}$, with inverse $\psi: \widehat{\mathcal{B}} \rightarrow \mathbb{D}$ given by $\gamma \mapsto \gamma\left(\delta_{1}\right)$. If $\left\{\gamma_{\alpha}\right\}$ is a net in $\widehat{\mathcal{B}}$ converging to $\gamma \in \widehat{\mathcal{B}}$, then $\psi\left(\gamma_{\alpha}\right)=\gamma_{\alpha}\left(\delta_{1}\right) \rightarrow \gamma\left(\delta_{1}\right)=\psi(\gamma)$. Thus, ψ is continuous. Since $\widehat{\mathcal{B}}$ is compact and \mathbb{D} is Hausdorff, we get that $\phi=\psi^{-1}$ is continuous too. Hence ϕ is an homeomorphism, as desired.

Next, identifying $\widehat{\mathcal{B}}$ with \mathbb{D}, we get that the Gelfand transform of \mathcal{B} is the map $\Gamma: \mathcal{B} \rightarrow C(\mathbb{D})$ given by

$$
[\Gamma(f)](\lambda)=\sum_{n=0}^{\infty} f(n) \lambda^{n} \quad \text { for } f \in \mathcal{B} \text { and } \lambda \in \mathbb{D}
$$

Indeed, for all $f \in \mathcal{B}$ and $\lambda \in \mathbb{D}$, we get that

$$
\Gamma(f)]\left(\gamma_{\lambda}\right)=\gamma_{\lambda}(f)=\sum_{n=0}^{\infty} f(n) \lambda^{n} .
$$

Thus, by identifying λ with γ_{λ}, we obtain the formula above.
It follows that Γ is one-to-one: Indeed, if $\Gamma\left(f_{1}\right)=\Gamma\left(f_{2}\right)$ for $f_{1}, f_{2} \in \mathcal{B}$, then we get that

$$
\sum_{n=0}^{\infty} f_{1}(n) \lambda^{n}=\sum_{n=0}^{\infty} f_{2}(n) \lambda^{n}
$$

for all $\lambda \in \mathbb{D}$. By the uniqueness of a power series expansion around zero, we get that $f_{1}(n)=f_{2}(n)$ for all $n \geq 0$, i.e., $f_{1}=f_{2}$.

The range of Γ may be decribed as the set of continuous complex functions on \mathbb{D} having an absolutely convergent power series expansion around zero valid in \mathbb{D}, i.e., which are analytic in \mathbb{D}^{0}. It follows that $\Gamma(\mathcal{B})$ is the disk algebra $\mathcal{A}(\mathbb{D})$.

