
MAT4450 - Spring 2024 - Solutions of exercises - Set 11

Exercise 45

Assume Ω is a non-compact, locally compact Hausdorff space. Consider the set of complex
continuous functions on Ω given by A = C0(Ω) + C 1Ω.

a) A is a unital commutative C∗-algebra w.r.t. ‖ · ‖∞:

Let B := Cb(Ω) denote the commutative unital C∗-algebra consisting of all complex bounded
continuous functions on Ω, equipped with the ‖ · ‖∞-norm. Since C0(Ω) is a closed subspace of B,
and C 1Ω is a finite-dimensional subspace of B, A = C0(Ω) + C 1Ω is a closed subspace of B. It is
elementary to check that A is closed under multiplication and that it is self-adjoint. Since
1Ω ∈ A, the assertion follows.

b) Â may be identified with the one-point compactification Ω ∪ {∞} of Ω:

Let γ ∈ Â. Denote by γ0 the restriction of γ to C0(Ω). Since γ(1Ω) = 1, we get that

γ(f + λ1Ω) = γ0(f) + λ

for f ∈ C0(Ω) and λ ∈ C. Letting ∞̃ : A → C be given by ∞̃(f + λ1Ω) := λ for f ∈ C0(Ω) and
λ ∈ C, we see that ∞̃ ∈ Â and

Â = {γ ∈ Â | γ0 6= 0} ∪ {∞̃} (disjoint union).

Now, for ω ∈ Ω, it is easy to check that γω : A → C defined by γω(g) := g(ω) for all g ∈ A belongs
to Â and satisfies (γω)0 6= 0. One verifies then without too much trouble that the map
φ : Ω ∪ {∞} → Â defined by

φ(t) :=

{
γω if t = ω ∈ Ω,

∞̃ if t =∞,
is a homeomorphism between these two compact Hausdorff spaces.

It follows that A is isometrically ∗-isomorphic to C(Ω ∪ {∞}):
Let Φ : C(Â)→ C(Ω ∪ {∞}) be defined by Φ(F ) := F ◦ φ for all F ∈ C(Â). Using that φ is a
homeomorphism, it is straightforward to check directly that Φ is an isometric ∗-isomorphism (you
can also use the next exercise if you want). As A is isometrically ∗-isomorphic to C(Â) by
Gelfand’s theorem, the desired conclusion follows.

Exercise 46

Let Ω,Ω′ be topological spaces. Recall that Cb(Ω) denotes the commutative unital C∗-algebra
consisting of all complex bounded continuous functions on Ω, equipped with the ‖ · ‖∞-norm. We

denote the character space Ĉb(Ω) of Cb(Ω) by βΩ. By Gelfand’s theorem, βΩ is a compact
Hausdorff space.

a) For ω ∈ Ω, define ιω : Cb(Ω)→ C by ιω(f) = f(ω) for all f ∈ Cb(Ω). Then ιω ∈ βΩ, and the
map ω 7→ ιω from Ω into βΩ is continuous:

It is obvious that ιω is linear, multiplicative and maps 1Ω to 1, hence that it belongs to βΩ. If
{ωα} is a net in Ω converging to ω ∈ Ω, then ιωα(f) = f(ωα)→ f(ω) = ιω(f) for all f ∈ Cb(Ω).

Thus ιωα converges to ιω in Ĉb(Ω) = βΩ. This shows that ω 7→ ιω is continuous.

b) Let h : Ω→ Ω′ be a continuous map. Define a map Φh : Cb(Ω
′)→ Cb(Ω) by

Φh(g) = g ◦ h

for each g ∈ Cb(Ω′).

1



i) Φh is a bounded ∗-homomorphism satisfying ‖Φh‖ = 1:

One checks readily that Φh is linear, multiplicative, and adjoint-preserving. For example, we
have Φh(ḡ) = ḡ ◦ h = g ◦ h = Φh(g) for all g ∈ C(Ω′). Moreover, we have
‖Φh(g)‖∞ = ‖g ◦ h‖∞ ≤ ‖g‖∞ for all g ∈ C(Ω′), so Φh is bounded with ‖Φh‖ ≤ 1. Since
‖Φh(1Ω′)‖∞ = ‖ 1Ω‖∞ = 1 and ‖1Ω′‖∞ = 1, we also have ‖Φh‖ ≥ 1. Hence, ‖Φh‖ = 1.

ii) Φh is isometric (and therefore injective) when h is surjective:

Assume h is surjective. Let g ∈ Cb(Ω′). Then

‖Φh(g)‖∞ = sup{
∣∣g(h(ω′)

)∣∣ : ω′ ∈ Ω′} = sup{
∣∣g(ω)

∣∣ : ω ∈ Ω} = ‖g‖∞.

iii) Assume that Ω,Ω′ are both compact Hausdorff spaces. Using Tietze’s extension theorem, we
get that Φh is surjective whenever h is injective:

We first note that h(Ω) is a compact subset of Ω′. Hence it also closed (since Ω′ is
Hausdorff). Now, assume that h is injective and let f ∈ Cb(Ω). The map h : Ω→ h(Ω) is a
continuous bijection, hence a homeomorphism. Letting k : h(Ω)→ Ω denote its inverse, we
have that f ◦ k : h(Ω)→ C is continuous. By Tietze’s extension theorem, we can extend
f ◦ k to some g ∈ C(Ω′). This gives that

Φh(g) = g ◦ h = f ◦ k ◦ h = f ◦ idΩ = f.

This shows that Φh

(
C(Ω′)

)
= C(Ω), as desired.

It follows that Φh is an isometric ∗-isomorphism from C(Ω′) onto C(Ω) whenever h is a
homeomorphism:

Assume h is a homeomorphism. Using i) and ii) we get that Φh is a ∗-homomorphism which
is isometric (hence injective). As seen above, Φh is also surjective. So Φh is an isometric
∗-isomorphism.

c) Assume Φ : Cb(Ω
′)→ Cb(Ω) is an (algebra-)homomorphism such that Φ(1Ω′) = 1Ω. Define

HΦ : βΩ→ βΩ′ by
HΦ(γ) = γ ◦ Φ for all γ ∈ βΩ.

Then HΦ is well-defined and continuous:

Let γ ∈ βΩ. Then γ ◦ Φ : Cb(Ω
′)→ C is linear and multiplicative. Moreover,

(γ ◦ Φ)(1Ω′) = γ(1Ω) = 1. So γ ◦ Φ is a character on Cb(Ω
′). Thus HΦ(γ) = γ ◦ Φ ∈ βΩ′, showing

that the map HΦ takes its values in βΩ′, as asserted in its definition.
Next, assume that {γα} is a net in βΩ converging to some γ ∈ βΩ. Then for every g ∈ Cb(Ω′) we
have

[HΦ(γα)](g) = [γα ◦ Φ](g) = γα
(
Φ(g)

)
−→ γ

(
Φ(g)

)
= [HΦ(γ)](g).

Thus, HΦ(γα)→ HΦ(γ). This shows that HΦ is continuous on βΩ.

d) The space βΩ satisfies the following universal property:

For any continuous function h : Ω→ K from Ω into some compact Hausdorff space K, there
exists a continuous function h̃ : βΩ→ K such that

h̃(ιω) = h(ω) for all ω ∈ Ω.

Let K be a compact Hausdorff space and assume h : Ω→ K is continuous. Using b) we can form
the (algebra-) homomorphism Φh : Cb(K) = C(K)→ Cb(Ω). Since it maps 1K to 1Ω, we can use
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c) and form the continuous map HΦh : βΩ→ βK. Now, recall that the map k 7→ δk from K into

Ĉ(K) = βK, where δk(g) := g(k) for k ∈ K and g ∈ C(K), is an homeomorphism.
Let ω ∈ Ω. Then for all g ∈ C(K) we have

(ιω ◦ Φh)(g) = ιω(Φh(g)) = [Φh(g)](ω) = (g ◦ h)(ω) = g(h(ω)) = δh(ω)(g).

Thus,
HΦh(ιω) = ιω ◦ Φh = δh(ω).

Let δ−1 : βK → K denote the inverse of the homeomorphism given by k 7→ δk. Then the map
h̃ := δ−1 ◦HΦh is a continuous map from βΩ into K satisfying

h̃(ιω) = δ−1
(
HΦh(ιω)

)
= δ−1(δh(ω)) = h(ω) for all ω ∈ Ω,

as desired.

e) Assume that Ω,Ω′ are both compact Hausdorff spaces. Then the following assertions are
equivalent :

(i) Ω and Ω′ are homeomorphic.

(ii) C(Ω) and C(Ω′) are isometrically ∗-isomorphic.

(iii) C(Ω) and C(Ω′) are isomorphic.

The implication (i) ⇒ (ii) follows from the last part of b), while the implication (ii) ⇒ (iii) is
trivial.
Assume that (iii) holds, i.e., there exists an isomorphism Φ : Cb(Ω

′) = C(Ω′)→ Cb(Ω) = C(Ω).
Then c) gives us a continuous map HΦ from βΩ to βΩ′, which is easily seen to be an
homeomorphism (with inverse map given by HΦ−1). As βΩ (resp. βΩ′) is homeomorphic to Ω
(resp. Ω′), it follows that Ω and Ω′ are homeomorphic, i.e., (i) holds. Thus, (iii) ⇒ (i).

Exercise 47

b) Assume that f ∈ C(sp(D)). Show that f(D) ∈ B(H) is the “diagonal” operator satisfying that
f(D)(ej) = f(λj) ej for every j ∈ J .

Let H be a nontrivial complex Hilbert space and B = {ej}j∈J be an orthonormal basis for H. Pick
λj ∈ C for each j ∈ J , and assume that supj∈J |λj | <∞.

Let D ∈ B(H) denote the associated “diagonal” operator satisfying that D(ej) = λj ej for every
j ∈ J .

a) D is normal :

As seen in a previous course, D∗ is the “diagonal” operator on H satisfying that D∗(ej) = λj ej
for every j ∈ J . This implies that

(D∗D)(ej) = λjλjej = λjλjej = (DD∗)(ej) for each j ∈ J.

Hence, D∗D = DD∗ (since a bounded operator is determined by its values on a orthonormal
basis).

b) Assume that f ∈ C(sp(D)). Then f(D) ∈ B(H) is the “diagonal” operator satisfying that
f(D)(ej) = f(λj) ej for every j ∈ J :

We recall that sp(D) = {λj : j ∈ J}. Let f ∈ C(sp(D)). Then {f(λj) : j ∈ J} is a bounded subset
of C since f(sp(D)) is compact. So we may form the diagonal operator ψ(f) determined by
(ψ(f))(ej) = f(λj)ej for all j ∈ J . It is now straightforward to verify that the map f 7→ ψ(f) is a
∗-homomorphism from C(sp(D)) into B(H) satisfying that ψ

(
1sp(D)

)
= IH and ψ(id) = D, where

id(z) = z for z ∈ C. By the uniqueness property of the continuous functional calculus for D, we
can conclude that ψ(f) = f(D) for every f ∈ C(sp(D)). This shows the assertion.
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