MAT4450 - Spring 2024 - Solutions of exercises - Set 11

Exercise 45

Assume Ω is a non-compact, locally compact Hausdorff space. Consider the set of complex continuous functions on Ω given by $\mathcal{A} = C_0(\Omega) + \mathbb{C} \mathbf{1}_{\Omega}$.

a) \mathcal{A} is a unital commutative C^* -algebra w.r.t. $\|\cdot\|_{\infty}$:

Let $\mathcal{B} := C_b(\Omega)$ denote the commutative unital C*-algebra consisting of all complex bounded continuous functions on Ω , equipped with the $\|\cdot\|_{\infty}$ -norm. Since $C_0(\Omega)$ is a closed subspace of \mathcal{B} , and $\mathbb{C} 1_{\Omega}$ is a finite-dimensional subspace of \mathcal{B} , $\mathcal{A} = C_0(\Omega) + \mathbb{C} 1_{\Omega}$ is a closed subspace of \mathcal{B} . It is elementary to check that \mathcal{A} is closed under multiplication and that it is self-adjoint. Since $1_{\Omega} \in \mathcal{A}$, the assertion follows.

b) $\widehat{\mathcal{A}}$ may be identified with the one-point compactification $\Omega \cup \{\infty\}$ of Ω :

Let $\gamma \in \widehat{\mathcal{A}}$. Denote by γ^0 the restriction of γ to $C_0(\Omega)$. Since $\gamma(1_\Omega) = 1$, we get that

$$\gamma(f + \lambda 1_{\Omega}) = \gamma^0(f) + \lambda$$

for $f \in C_0(\Omega)$ and $\lambda \in \mathbb{C}$. Letting $\widetilde{\infty} : \mathcal{A} \to \mathbb{C}$ be given by $\widetilde{\infty}(f + \lambda \mathbf{1}_{\Omega}) := \lambda$ for $f \in C_0(\Omega)$ and $\lambda \in \mathbb{C}$, we see that $\widetilde{\infty} \in \widehat{\mathcal{A}}$ and

$$\widehat{\mathcal{A}} = \{ \gamma \in \widehat{\mathcal{A}} \mid \gamma^0 \neq 0 \} \cup \{ \widetilde{\infty} \} \quad \text{(disjoint union)}.$$

Now, for $\omega \in \Omega$, it is easy to check that $\gamma_{\omega} : \mathcal{A} \to \mathbb{C}$ defined by $\gamma_{\omega}(g) := g(\omega)$ for all $g \in \mathcal{A}$ belongs to $\widehat{\mathcal{A}}$ and satisfies $(\gamma_{\omega})^0 \neq 0$. One verifies then without too much trouble that the map $\phi : \Omega \cup \{\infty\} \to \widehat{\mathcal{A}}$ defined by

$$\phi(t) := \begin{cases} \gamma_{\omega} & \text{if } t = \omega \in \Omega\\ \widetilde{\infty} & \text{if } t = \infty, \end{cases}$$

is a homeomorphism between these two compact Hausdorff spaces.

It follows that \mathcal{A} is isometrically *-isomorphic to $C(\Omega \cup \{\infty\})$:

Let $\Phi : C(\widehat{\mathcal{A}}) \to C(\Omega \cup \{\infty\})$ be defined by $\Phi(F) := F \circ \phi$ for all $F \in C(\widehat{\mathcal{A}})$. Using that ϕ is a homeomorphism, it is straightforward to check directly that Φ is an isometric *-isomorphism (you can also use the next exercise if you want). As \mathcal{A} is isometrically *-isomorphic to $C(\widehat{\mathcal{A}})$ by Gelfand's theorem, the desired conclusion follows.

Exercise 46

Let Ω, Ω' be topological spaces. Recall that $C_b(\Omega)$ denotes the commutative unital C^* -algebra consisting of all complex bounded continuous functions on Ω , equipped with the $\|\cdot\|_{\infty}$ -norm. We denote the character space $\widehat{C_b(\Omega)}$ of $C_b(\Omega)$ by $\beta\Omega$. By Gelfand's theorem, $\beta\Omega$ is a compact Hausdorff space.

a) For $\omega \in \Omega$, define $\iota_{\omega} : C_b(\Omega) \to \mathbb{C}$ by $\iota_{\omega}(f) = f(\omega)$ for all $f \in C_b(\Omega)$. Then $\iota_{\omega} \in \beta\Omega$, and the map $\omega \mapsto \iota_{\omega}$ from Ω into $\beta\Omega$ is continuous:

It is obvious that ι_{ω} is linear, multiplicative and maps 1_{Ω} to 1, hence that it belongs to $\beta\Omega$. If $\{\omega_{\alpha}\}$ is a net in Ω converging to $\omega \in \Omega$, then $\iota_{\omega_{\alpha}}(f) = f(\omega_{\alpha}) \to f(\omega) = \iota_{\omega}(f)$ for all $f \in C_b(\Omega)$. Thus $\iota_{\omega_{\alpha}}$ converges to ι_{ω} in $\widehat{C_b(\Omega)} = \beta\Omega$. This shows that $\omega \mapsto \iota_{\omega}$ is continuous.

b) Let $h: \Omega \to \Omega'$ be a continuous map. Define a map $\Phi_h: C_b(\Omega') \to C_b(\Omega)$ by

$$\Phi_h(g) = g \circ h$$

for each $g \in C_b(\Omega')$.

i) Φ_h is a bounded *-homomorphism satisfying $\|\Phi_h\| = 1$:

One checks readily that Φ_h is linear, multiplicative, and adjoint-preserving. For example, we have $\Phi_h(\bar{g}) = \bar{g} \circ h = \overline{g \circ h} = \overline{\Phi_h(g)}$ for all $g \in C(\Omega')$. Moreover, we have $\|\Phi_h(g)\|_{\infty} = \|g \circ h\|_{\infty} \leq \|g\|_{\infty}$ for all $g \in C(\Omega')$, so Φ_h is bounded with $\|\Phi_h\| \leq 1$. Since $\|\Phi_h(1_{\Omega'})\|_{\infty} = \|1_{\Omega}\|_{\infty} = 1$ and $\|1_{\Omega'}\|_{\infty} = 1$, we also have $\|\Phi_h\| \geq 1$. Hence, $\|\Phi_h\| = 1$.

ii) Φ_h is isometric (and therefore injective) when h is surjective:

Assume h is surjective. Let $g \in C_b(\Omega')$. Then

$$\|\Phi_h(g)\|_{\infty} = \sup\{\left|g(h(\omega'))\right| : \omega' \in \Omega'\} = \sup\{\left|g(\omega)\right| : \omega \in \Omega\} = \|g\|_{\infty}$$

iii) Assume that Ω, Ω' are both compact Hausdorff spaces. Using Tietze's extension theorem, we get that Φ_h is surjective whenever h is injective:

We first note that $h(\Omega)$ is a compact subset of Ω' . Hence it also closed (since Ω' is Hausdorff). Now, assume that h is injective and let $f \in C_b(\Omega)$. The map $h : \Omega \to h(\Omega)$ is a continuous bijection, hence a homeomorphism. Letting $k : h(\Omega) \to \Omega$ denote its inverse, we have that $f \circ k : h(\Omega) \to \mathbb{C}$ is continuous. By Tietze's extension theorem, we can extend $f \circ k$ to some $g \in C(\Omega')$. This gives that

$$\Phi_h(g) = g \circ h = f \circ k \circ h = f \circ \mathrm{id}_\Omega = f.$$

This shows that $\Phi_h(C(\Omega')) = C(\Omega)$, as desired.

It follows that Φ_h is an isometric *-isomorphism from $C(\Omega')$ onto $C(\Omega)$ whenever h is a homeomorphism:

Assume h is a homeomorphism. Using i) and ii) we get that Φ_h is a *-homomorphism which is isometric (hence injective). As seen above, Φ_h is also surjective. So Φ_h is an isometric *-isomorphism.

c) Assume $\Phi: C_b(\Omega') \to C_b(\Omega)$ is an (algebra-)homomorphism such that $\Phi(1_{\Omega'}) = 1_{\Omega}$. Define $H_{\Phi}: \beta\Omega \to \beta\Omega'$ by

$$H_{\Phi}(\gamma) = \gamma \circ \Phi$$
 for all $\gamma \in \beta \Omega$.

Then H_{Φ} is well-defined and continuous:

Let $\gamma \in \beta\Omega$. Then $\gamma \circ \Phi : C_b(\Omega') \to C$ is linear and multiplicative. Moreover,

 $(\gamma \circ \Phi)(1_{\Omega'}) = \gamma(1_{\Omega}) = 1$. So $\gamma \circ \Phi$ is a character on $C_b(\Omega')$. Thus $H_{\Phi}(\gamma) = \gamma \circ \Phi \in \beta \Omega'$, showing that the map H_{Φ} takes its values in $\beta \Omega'$, as asserted in its definition.

Next, assume that $\{\gamma_{\alpha}\}$ is a net in $\beta\Omega$ converging to some $\gamma \in \beta\Omega$. Then for every $g \in C_b(\Omega')$ we have

$$[H_{\Phi}(\gamma_{\alpha})](g) = [\gamma_{\alpha} \circ \Phi](g) = \gamma_{\alpha}(\Phi(g)) \longrightarrow \gamma(\Phi(g)) = [H_{\Phi}(\gamma)](g).$$

Thus, $H_{\Phi}(\gamma_{\alpha}) \to H_{\Phi}(\gamma)$. This shows that H_{Φ} is continuous on $\beta\Omega$.

d) The space $\beta\Omega$ satisfies the following universal property:

For any continuous function $h: \Omega \to K$ from Ω into some compact Hausdorff space K, there exists a continuous function $\tilde{h}: \beta\Omega \to K$ such that

$$\tilde{h}(\iota_{\omega}) = h(\omega) \text{ for all } \omega \in \Omega.$$

Let K be a compact Hausdorff space and assume $h: \Omega \to K$ is continuous. Using b) we can form the (algebra-) homomorphism $\Phi_h: C_b(K) = C(K) \to C_b(\Omega)$. Since it maps 1_K to 1_{Ω} , we can use c) and form the continuous map $H_{\Phi_h} : \beta\Omega \to \beta K$. Now, recall that the map $k \mapsto \delta_k$ from K into $\widehat{C(K)} = \beta K$, where $\delta_k(g) := g(k)$ for $k \in K$ and $g \in C(K)$, is an homeomorphism. Let $\omega \in \Omega$. Then for all $g \in C(K)$ we have

$$(\iota_{\omega} \circ \Phi_h)(g) = \iota_{\omega}(\Phi_h(g)) = [\Phi_h(g)](\omega) = (g \circ h)(\omega) = g(h(\omega)) = \delta_{h(\omega)}(g).$$

Thus,

$$H_{\Phi_h}(\iota_{\omega}) = \iota_{\omega} \circ \Phi_h = \delta_{h(\omega)}.$$

Let $\delta^{-1} : \beta K \to K$ denote the inverse of the homeomorphism given by $k \mapsto \delta_k$. Then the map $\tilde{h} := \delta^{-1} \circ H_{\Phi_h}$ is a continuous map from $\beta \Omega$ into K satisfying

$$\tilde{h}(\iota_{\omega}) = \delta^{-1}(H_{\Phi_h}(\iota_{\omega})) = \delta^{-1}(\delta_{h(\omega)}) = h(\omega) \text{ for all } \omega \in \Omega,$$

as desired.

e) Assume that Ω, Ω' are both compact Hausdorff spaces. Then the following assertions are equivalent:

- (i) Ω and Ω' are homeomorphic.
- (ii) $C(\Omega)$ and $C(\Omega')$ are isometrically *-isomorphic.
- (iii) $C(\Omega)$ and $C(\Omega')$ are isomorphic.

The implication (i) \Rightarrow (ii) follows from the last part of b), while the implication (ii) \Rightarrow (iii) is trivial.

Assume that (iii) holds, i.e., there exists an isomorphism $\Phi : C_b(\Omega') = C(\Omega') \to C_b(\Omega) = C(\Omega)$. Then c) gives us a continuous map H_{Φ} from $\beta\Omega$ to $\beta\Omega'$, which is easily seen to be an homeomorphism (with inverse map given by $H_{\Phi^{-1}}$). As $\beta\Omega$ (resp. $\beta\Omega'$) is homeomorphic to Ω (resp. Ω'), it follows that Ω and Ω' are homeomorphic, i.e., (i) holds. Thus, (iii) \Rightarrow (i).

Exercise 47

b) Assume that $f \in C(\operatorname{sp}(D))$. Show that $f(D) \in \mathcal{B}(H)$ is the "diagonal" operator satisfying that $f(D)(e_j) = f(\lambda_j) e_j$ for every $j \in J$.

Let H be a nontrivial complex Hilbert space and $\mathcal{B} = \{e_j\}_{j \in J}$ be an orthonormal basis for H. Pick $\lambda_j \in \mathbb{C}$ for each $j \in J$, and assume that $\sup_{j \in J} |\lambda_j| < \infty$.

Let $D \in \mathcal{B}(H)$ denote the associated "diagonal" operator satisfying that $D(e_j) = \lambda_j e_j$ for every $j \in J$.

a) D is normal :

As seen in a previous course, D^* is the "diagonal" operator on H satisfying that $D^*(e_j) = \overline{\lambda_j} e_j$ for every $j \in J$. This implies that

$$(D^*D)(e_j) = \overline{\lambda_j}\lambda_j e_j = \lambda_j \overline{\lambda_j} e_j = (DD^*)(e_j)$$
 for each $j \in J$.

Hence, $D^*D = DD^*$ (since a bounded operator is determined by its values on a orthonormal basis).

b) Assume that $f \in C(\operatorname{sp}(D))$. Then $f(D) \in \mathcal{B}(H)$ is the "diagonal" operator satisfying that $f(D)(e_j) = f(\lambda_j) e_j$ for every $j \in J$:

We recall that $\operatorname{sp}(D) = \overline{\{\lambda_j : j \in J\}}$. Let $f \in C(\operatorname{sp}(D))$. Then $\{f(\lambda_j) : j \in J\}$ is a bounded subset of \mathbb{C} since $f(\operatorname{sp}(D))$ is compact. So we may form the diagonal operator $\psi(f)$ determined by $(\psi(f))(e_j) = f(\lambda_j)e_j$ for all $j \in J$. It is now straightforward to verify that the map $f \mapsto \psi(f)$ is a *-homomorphism from $C(\operatorname{sp}(D))$ into $\mathcal{B}(H)$ satisfying that $\psi(1_{\operatorname{sp}(D)}) = I_H$ and $\psi(\operatorname{id}) = D$, where $\operatorname{id}(z) = z$ for $z \in \mathbb{C}$. By the uniqueness property of the continuous functional calculus for D, we can conclude that $\psi(f) = f(D)$ for every $f \in C(\operatorname{sp}(D))$. This shows the assertion.