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Exercise 45

Assume § is a non-compact, locally compact Hausdorff space. Consider the set of complex
continuous functions on Q0 given by A = Cy(2) + C 1q.

a) A is a unital commutative C*-algebra w.r.t. || - ||oo:

Let B := () denote the commutative unital C*-algebra consisting of all complex bounded
continuous functions on €, equipped with the || - ||-norm. Since Cy(f2) is a closed subspace of B,
and C 1q is a finite-dimensional subspace of B, A = Cy(Q2) + C 1q is a closed subspace of B. It is
elementary to check that A is closed under multiplication and that it is self-adjoint. Since

1q € A, the assertion follows.

b) A may be identified with the one-point compactification QU {o0} of

Let v € A. Denote by 7° the restriction of v to Co(£2). Since y(1q) = 1, we get that

Y(f + M) =1°(f) + A

for f € Co(Q2) and A € C. Letting 00 : A — C be given by oo(f + Alg) := A for f € Co(2) and
A € C, we see that oo € A and

A={yeA|y"#£0}U{z} (disjoint union).
Now, for w € €, it is easy to check that ~, : A — C defined by ~,(g) := g(w) for all g € A belongs

to A and satisfies (7.,)? # 0. One verifies then without too much trouble that the map
¢ : QU{oo} — A defined by
Yo ift=we,
o(t) == {ff

oo ift= oo,
is a homeomorphism between these two compact Hausdorff spaces.

It follows that A is isometrically x-isomorphic to C(2U {occ}):

Let @ : C(A) — C(Q U {oo}) be defined by ®(F') := F o ¢ for all F' € C(A). Using that ¢ is a
homeomorphism, it is straightforward to check directly that ® is an isometric *-isomorphism (you
can also use the next exercise if you want). As A is isometrically *-isomorphic to C (_,Z[\) by
Gelfand’s theorem, the desired conclusion follows.

Exercise 46

Let Q, QY be topological spaces. Recall that Cy(S2) denotes the commutative unital C*-algebra
consisting of all complex bounded continuous functions on Q, equipped with the || - ||oo-norm. We

denote the character space CT,(Q\) of Cp(2) by BQ. By Gelfand’s theorem, S is a compact
Hausdorff space.

a) For w € Q, define v, : Cp(Q) = C by 1,(f) = f(w) for all f € Cy,(). Then 1, € 52, and the
map w — L, from € into BS) is continuous:

It is obvious that ¢, is linear, multiplicative and maps 1o to 1, hence that it belongs to 8. If
{wa} is a net in Q converging to w € 2, then ¢y, (f) = f(wa) = f(w) = tu(f) for all f € Cy(9Q).

Thus ¢, converges to ¢, in Cy(2) = S This shows that w > ¢, is continuous.

b) Let h: Q — Q' be a continuous map. Define a map @y, : Cp(Y) — Cp(2) by

®u(g) =goh
for each g € Cp(Y).



i) @y is a bounded x-homomorphism satisfying ||®p| = 1:

One checks readily that @y, is linear, multiplicative, and adjoint-preserving. For example, we
have ®,(g) = goh = goh = ®,(g) for all g € C(Y'). Moreover, we have

1P (9)]loo = llg 0 hlloc < ||g]lco for all g € C(£Y), so @, is bounded with ||®|| < 1. Since
|1Ph(1a)]leo = || 1alloo =1 and ||1or|lcc = 1, we also have ||®p]| > 1. Hence, ||®y] = 1.

i) @y, is isometric (and therefore injective) when h is surjective:
Assume h is surjective. Let g € Cp(Y). Then

@1 (9)lloe = sup{|g(h(w"))]| : & € '} = sup{|g(w)] : w € 2} = [|g]lo-

iii) Assume that 2, are both compact Hausdorff spaces. Using Tietze’s extension theorem, we
get that ®y, is surjective whenever h is injective:

We first note that h(2) is a compact subset of €. Hence it also closed (since Q' is
Hausdorff). Now, assume that A is injective and let f € Cp(€2). The map h: Q — h(Q) is a
continuous bijection, hence a homeomorphism. Letting & : h(2) — © denote its inverse, we
have that f ok : h(Q2) — C is continuous. By Tietze’s extension theorem, we can extend

f ok tosome g € C(£). This gives that

Pp(g) =goh=fokoh=foidg=f.
This shows that @, (C(Q)) = C(2), as desired.

It follows that ®y, is an isometric x-isomorphism from C(Q') onto C () whenever h is a
homeomorphism:

Assume h is a homeomorphism. Using i) and ii) we get that ®;, is a *-homomorphism which
is isometric (hence injective). As seen above, @y, is also surjective. So @, is an isometric
*-isomorphism.

¢) Assume ® : Cp(QY) — Cy(Q) is an (algebra-)homomorphism such that ®(1q) = 1. Define
Hg : fQ — B by

Hg(y) =vo0® for all v € Q.
Then Hg is well-defined and continuous:
Let v € BQ. Then yo ® : Cp(QY) — C is linear and multiplicative. Moreover,
(7o ®)(1lgy) = v(1lg) = 1. So yo @ is a character on Cy()'). Thus He(y) = v o ® € 5, showing
that the map Hg takes its values in S, as asserted in its definition.

Next, assume that {74} is a net in 3Q converging to some v € Q. Then for every g € C,(Q)') we
have

[Ha (70)1(9) = [Ya 0 ®](9) = 7a(2(9)) — 7(2(9)) = [Ha(1)](9)-
Thus, He(Ya) — He(y). This shows that Hg is continuous on 512.

d) The space B satisfies the following universal property:

For any continuous function h: Q@ — K from € into some compact Hausdorff space K, there
exists a continuous function h : BQ — K such that

h(w,) = h(w) forall we Q.

Let K be a compact Hausdorff space and assume h : Q — K is continuous. Using b) we can form
the (algebra-) homomorphism @, : Cp(K) = C(K) — C(£2). Since it maps 1x to 1g, we can use



c) and form the continuous map Hg, : S — SK. Now, recall that the map k — ¢ from K into

C/'(E) = BK, where 0;(g) := g(k) for k € K and g € C(K), is an homeomorphism.
Let w € Q. Then for all g € C(K) we have

(tw © @4)(9) = w(Pn(g)) = [Pr(9)l(w) = (g0 h)(w) = g(h(w)) = Onw)(9)-
Thus,
HQh(Lw) =1,0P, = 6h(w)'
Let 571 : BK — K denote the inverse of the homeomorphism given by k + &;. Then the map
h:=d6"1o Hg, is a continuous map from () into K satisfying
h(i,) =071 (Ho, (w)) = (5_1(5h(w)) = h(w) for all w e 0,
as desired.

e) Assume that Q,Q are both compact Hausdorff spaces. Then the following assertions are
equivalent:

(i) Q and Q' are homeomorphic.
(ii) C(Q) and C(Y) are isometrically x-isomorphic.
(iii) C(2) and C(Y) are isomorphic.

The implication (i) = (ii) follows from the last part of b), while the implication (ii) = (iii) is
trivial.

Assume that (iii) holds, i.e., there exists an isomorphism ® : C,(QY') = C(Q) — Cp(Q) = C(Q).
Then ¢) gives us a continuous map Hg from S to 8, which is easily seen to be an
homeomorphism (with inverse map given by Hg-1). As 8Q (resp. 5€') is homeomorphic to €
(resp. '), it follows that © and €' are homeomorphic, i.e., (i) holds. Thus, (iii) = (i).

Exercise 47
b) Assume that f € C(sp(D)). Show that f(D) € B(H) is the “diagonal” operator satisfying that
f(D)(ej) = f(Aj)ej for every j € J.
Let H be a nontrivial complex Hilbert space and B = {e;}jes be an orthonormal basis for H. Pick
Aj € C for each j € J, and assume that sup;c ;| \;j| < oo.
Let D € B(H) denote the associated “diagonal” operator satisfying that D(e;) = \je; for every
jed.
a) D is normal :
As seen in a previous course, D* is the “diagonal” operator on H satisfying that D*(e;) = /\7]'6]'
for every j € J. This implies that

(D*D)(ej) = AjAjej = AjAjej = (DD*)(e;)  for each j € J.
Hence, D*D = DD* (since a bounded operator is determined by its values on a orthonormal
basis).
b) Assume that f € C(sp(D)). Then f(D) € B(H) is the “diagonal” operator satisfying that
f(D)(ej) = f(\;)e; for every j € J:
We recall that sp(D) = {\; : j € J}. Let f € C(sp(D)). Then {f()\;) : j € J} is a bounded subset
of C since f(sp(D)) is compact. So we may form the diagonal operator ¢ (f) determined by
((f))(ej) = f(Nj)ej for all j € J. It is now straightforward to verify that the map f — ¢ (f) is a
*-homomorphism from C(sp(D)) into B(H) satisfying that ¢ (1s,p)) = Iz and ¢(id) = D, where
id(z) = z for z € C. By the uniqueness property of the continuous functional calculus for D, we
can conclude that ¢(f) = f(D) for every f € C(sp(D)). This shows the assertion.



