
MAT4450 - Spring 2024 - Solutions of exercises - Set 12

Exercise 48
There were sorrily some misprints in the text of this exercise. The original idea was to assume
that the Hilbert space H was finite-dimensional with dim(H) = n, so that the spectrum of A was
necessarily a finite set. However, one may skip the assumption that H is finite-dimensional and
just assume that the spectrum of A is finite, as we do below.

Let H be a complex Hilbert space and consider A := B(H) as a C∗-algebra with unit I (= the
identity operator). Assume that A ∈ A is normal and has a finite spectrum, i.e.,
sp(A) = {λ1, . . . , λk} where k ∈ N and λj 6= λj′ for j 6= j′. For each j, let fj : sp(A)→ C denote
the indicator function of the set {λj} inside sp(A), and set Pj := fj(A) ∈ A. We have seen that
the Pj ’s are orthogonal projections in A which are are orthogonal to each other (i.e., PjP

′
j = 0 for

j 6= j′) and satisfy
k∑
j=1

Pj = I and
k∑
j=1

λjPj = A.

For each j, let EAλj denote the eigenspace of A corresponding to the eigenvalue λj , i.e.,

EAλj = ker
(
λjI −A

)
.

Each Pj is the orthogonal projection from H onto EAλj :

We note that each λj is an isolated point of sp(A), so the claim follows from a result we proved in
a lecture. We give a self-contained, elementary argument below.

For each j, set Mj = Pj(H). Then each Mj is a closed subspace of H, and Pj is the orthogonal
projection from H onto Mj . So we have to show that Mj = EAλj for each j.

Assume first that x ∈Mj . Then Pj x = x. On the other hand, if j′ 6= j, then P ′jPj = 0, so
Pj′ x = Pj′Pj x = 0. Hence we get that

Ax =

k∑
j′=1

λj′Pj′x = λjx ,

i.e., x ∈ EAλj . Conversely, assume that x ∈ EAλj , i.e., (λjI −A)x = 0. Note that

λjI −A =
k∑

j′=1

λjPj′ −
k∑

j′=1

λj′Pj′ =
k∑

j′=1

(λj − λj′)Pj′ =
∑

j′∈{1,...,k},j′ 6=j

(λj − λj′)Pj′ .

Now, set

B :=
∑

l∈{1,...,k},`6=j

1

λj − λl
P` .

Using that Pj′P` = 0 whenever j′ 6= `, we get that

B (λjI −A) =
( ∑
l∈{1,...,k},`6=j

1

λj − λl
P`

)( ∑
j′∈{1,...,k},j′ 6=j

(λj − λj′)Pj′
)

=
∑

j′∈{1,...,k},j′ 6=j

Pj′ = I − Pj .

This gives that (I − Pj)x = B(λjI −A)x = B 0 = 0, hence that x = Pjx ∈Mj .
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Exercise 49

Let H be a complex Hilbert space and consider A = B(H) as a C∗-algebra.

Set A+ = {A ∈ A : A ≥ 0}. We recall that A ≥ 0 if and only if 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ H.

a) The following properties of A+ hold.

• A+ is closed in A:

Assume {An} is a sequence in A+ converging to some A ∈ A. Let ξ ∈ H. Then, using the
Cauchy-Schwarz inequality, we get that |〈Anξ, ξ〉 − 〈Aξ, ξ〉| ≤ ‖A−An‖ ‖ξ‖2 → 0 as n→∞.
Since 〈Anξ, ξ〉 ≥ 0 for every n ∈ N, this gives that 〈Aξ, ξ〉 = limn→∞〈Anξ, ξ〉 ≥ 0. Hence,
A ∈ A+.

• If A,B ∈ A+ and λ ∈ R+, then A+B ∈ A+ and λA ∈ A+: This is straightforward.

• If A ∈ A+ ∩ (−A+), then A = 0:

Assume A ∈ A+ ∩ (−A+). Then we have that sp(A) ⊆ [0,∞) and sp(A) ⊆ (−∞, 0], i.e.,
sp(A) = {0}. Since A is self-adjoint, hence normal, this implies that ‖A‖ = r(A) = 0, i.e.,
A = 0.

• If A,B ∈ A+ and AB = BA, then AB ∈ A+:

Assume A,B ∈ A+ and AB = BA. Then A1/2B = BA1/2, so
AB = A1/2A1/2B = A1/2BA1/2. Hence, for every ξ ∈ H, we have
〈ABξ, ξ〉 = 〈A1/2BA1/2ξ, ξ〉 = 〈BA1/2ξ, A1/2ξ〉 ≥ 0. Thus, AB ≥ 0.

b) An example with H = C2 where A,B ∈ A+, AB 6= BA and AB 6∈ A+ is as follows:

Let {e1, e2} denote the standard basis of C2. Let then A,B ∈ B(C2) be the operators satisfying
Ae1 = e1, Ae2 = 2e2, Be1 = Be2 = e1 + e2. Then A and B are self-adjoint (look at their standard
matrices). Moreover, sp(A) = {1, 2} and sp(B) = {0, 2} (since B(e1 − e2) = 0 and
B(e1 + e2) = 2(e1 + e2)). Thus, A,B ∈ A+. As ABe1 = e1 + 2e2, while BAe1 = e1 + e2, we have
AB 6= BA. Now, (AB)∗ = B∗A∗ = BA 6= AB, so AB is not self-adjoint. Thus, AB 6∈ A+.

Exercise 50

Let V be a complex vector space and L : V × V → C be a sesquilinear form on V , i.e., L is linear
in the first variable and conjugate-linear in the second.

a) We have:

L(v, w) =
1

4

3∑
k=0

ik L
(
v + ikw, v + ikw

)
for all v, w ∈ V.

(This is called the polarization identity.)

Indeed, a lengthy computation gives that

L
(
v + w, v + w

)
+ iL

(
v + iw, v + iw

)
− L

(
v − w, v − w

)
− iL

(
v − iw, v − iw

)
= · · · = 4L

(
v, w

)
.

Hence, if L′ is a sesquilinear form on V such that L′(v, v) = L(v, v) for all v ∈ V , then L′ = L,
since the polarization identity gives that

L′(v, w) =
1

4

3∑
k=0

ik L′
(
v + ikw, v + ikw

)
=

1

4

3∑
k=0

ik L
(
v + ikw, v + ikw

)
= L(v, w)

for all v, w ∈ V .
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b) Define L∗ : V × V → C by L∗(v, w) := L(w, v) for all v, w ∈ V . Then L∗ is also a sesquilinear
form on V : This is straightforward.

It follows that L is self-adjoint, that is, L∗ = L, if and only if L(v, v) ∈ R for all v ∈ V :

Assume L∗ = L. Let v ∈ V . Then L(v, v) = L∗(v, v) = L(v, v), so L(v, v) ∈ R. This shows the
forward implication.
Conversely, assume L(v, v) ∈ R for all v ∈ V . Let v, w ∈ V . Then, using the polarization identity,
we get that

L∗(v, w) =
1

4

3∑
k=0

ik L∗
(
v + ikw, v + ikw

)
=

1

4

3∑
k=0

ik L
(
v + ikw, v + ikw

)

=
1

4

3∑
k=0

ik L
(
v + ikw, v + ikw

)
= L(v, w).

c) Let H be a complex Hilbert space, S ∈ B(H) and let LS : H ×H → C denote the sesquilinear
form on H given by LS(ξ, η) := 〈S(ξ), η〉 for all ξ, η ∈ H.

We have that (LS)∗ = LS∗ :

Let ξ, η ∈ H. Then

(LS)∗(ξ, η) = LS(η, ξ) = 〈S(η), ξ〉 = 〈ξ, S(η)〉 = 〈S∗(ξ), η〉.

This shows the claim.

It follows that LS is self-adjoint if and only if S is self-adjoint, if and only if 〈S(ξ), ξ〉 ∈ R for all
ξ ∈ H:

The first equivalence follows readily from the claim above. The second equivalence is an
immediate consequence of the second statement in b) (applied to LS).
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