MAT4450-Spring 2024 - Solutions of exercises - Set 12

Exercise 48

There were sorrily some misprints in the text of this exercise. The original idea was to assume that the Hilbert space H was finite-dimensional with $\operatorname{dim}(H)=n$, so that the spectrum of A was necessarily a finite set. However, one may skip the assumption that H is finite-dimensional and just assume that the spectrum of A is finite, as we do below.

Let H be a complex Hilbert space and consider $\mathcal{A}:=\mathcal{B}(H)$ as a C^{*}-algebra with unit I (= the identity operator). Assume that $A \in \mathcal{A}$ is normal and has a finite spectrum, i.e., $\operatorname{sp}(A)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ where $k \in \mathbb{N}$ and $\lambda_{j} \neq \lambda_{j^{\prime}}$ for $j \neq j^{\prime}$. For each j, let $f_{j}: \operatorname{sp}(A) \rightarrow \mathbb{C}$ denote the indicator function of the set $\left\{\lambda_{j}\right\}$ inside $\operatorname{sp}(A)$, and set $P_{j}:=f_{j}(A) \in \mathcal{A}$. We have seen that the P_{j} 's are orthogonal projections in \mathcal{A} which are are orthogonal to each other (i.e., $P_{j} P_{j}^{\prime}=0$ for $j \neq j^{\prime}$) and satisfy

$$
\sum_{j=1}^{k} P_{j}=I \quad \text { and } \quad \sum_{j=1}^{k} \lambda_{j} P_{j}=A
$$

For each j, let $E_{\lambda_{j}}^{A}$ denote the eigenspace of A corresponding to the eigenvalue λ_{j}, i.e., $E_{\lambda_{j}}^{A}=\operatorname{ker}\left(\lambda_{j} I-A\right)$.
Each P_{j} is the orthogonal projection from H onto $E_{\lambda_{j}}^{A}$:
We note that each λ_{j} is an isolated point of $\operatorname{sp}(A)$, so the claim follows from a result we proved in a lecture. We give a self-contained, elementary argument below.

For each j, set $M_{j}=P_{j}(H)$. Then each M_{j} is a closed subspace of H, and P_{j} is the orthogonal projection from H onto M_{j}. So we have to show that $M_{j}=E_{\lambda_{j}}^{A}$ for each j.
Assume first that $x \in M_{j}$. Then $P_{j} x=x$. On the other hand, if $j^{\prime} \neq j$, then $P_{j}^{\prime} P_{j}=0$, so $P_{j^{\prime}} x=P_{j^{\prime}} P_{j} x=0$. Hence we get that

$$
A x=\sum_{j^{\prime}=1}^{k} \lambda_{j^{\prime}} P_{j^{\prime}} x=\lambda_{j} x
$$

i.e., $x \in E_{\lambda_{j}}^{A}$. Conversely, assume that $x \in E_{\lambda_{j}}^{A}$, i.e., $\left(\lambda_{j} I-A\right) x=0$. Note that

$$
\lambda_{j} I-A=\sum_{j^{\prime}=1}^{k} \lambda_{j} P_{j^{\prime}}-\sum_{j^{\prime}=1}^{k} \lambda_{j^{\prime}} P_{j^{\prime}}=\sum_{j^{\prime}=1}^{k}\left(\lambda_{j}-\lambda_{j^{\prime}}\right) P_{j^{\prime}}=\sum_{j^{\prime} \in\{1, \ldots, k\}, j^{\prime} \neq j}\left(\lambda_{j}-\lambda_{j^{\prime}}\right) P_{j^{\prime}}
$$

Now, set

$$
B:=\sum_{l \in\{1, \ldots, k\}, \ell \neq j} \frac{1}{\lambda_{j}-\lambda_{l}} P_{\ell} .
$$

Using that $P_{j^{\prime}} P_{\ell}=0$ whenever $j^{\prime} \neq \ell$, we get that

$$
\begin{aligned}
B\left(\lambda_{j} I-A\right) & =\left(\sum_{l \in\{1, \ldots, k\}, \ell \neq j} \frac{1}{\lambda_{j}-\lambda_{l}} P_{\ell}\right)\left(\sum_{j^{\prime} \in\{1, \ldots, k\}, j^{\prime} \neq j}\left(\lambda_{j}-\lambda_{j^{\prime}}\right) P_{j^{\prime}}\right) \\
& =\sum_{j^{\prime} \in\{1, \ldots, k\}, j^{\prime} \neq j} P_{j^{\prime}}=I-P_{j} .
\end{aligned}
$$

This gives that $\left(I-P_{j}\right) x=B\left(\lambda_{j} I-A\right) x=B 0=0$, hence that $x=P_{j} x \in M_{j}$.

Exercise 49

Let H be a complex Hilbert space and consider $\mathcal{A}=\mathcal{B}(H)$ as a C^{*}-algebra.
Set $\mathcal{A}^{+}=\{A \in \mathcal{A}: A \geq 0\}$. We recall that $A \geq 0$ if and only if $\langle A \xi, \xi\rangle \geq 0$ for all $\xi \in H$.
a) The following properties of \mathcal{A}^{+}hold.

- \mathcal{A}^{+}is closed in \mathcal{A} :

Assume $\left\{A_{n}\right\}$ is a sequence in \mathcal{A}^{+}converging to some $A \in \mathcal{A}$. Let $\xi \in H$. Then, using the Cauchy-Schwarz inequality, we get that $\left|\left\langle A_{n} \xi, \xi\right\rangle-\langle A \xi, \xi\rangle\right| \leq\left\|A-A_{n}\right\|\|\xi\|^{2} \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\langle A_{n} \xi, \xi\right\rangle \geq 0$ for every $n \in \mathbb{N}$, this gives that $\langle A \xi, \xi\rangle=\lim _{n \rightarrow \infty}\left\langle A_{n} \xi, \xi\right\rangle \geq 0$. Hence, $A \in \mathcal{A}^{+}$.

- If $A, B \in \mathcal{A}^{+}$and $\lambda \in \mathbb{R}^{+}$, then $A+B \in \mathcal{A}^{+}$and $\lambda A \in \mathcal{A}^{+}$: This is straightforward.
- If $A \in \mathcal{A}^{+} \cap\left(-\mathcal{A}^{+}\right)$, then $A=0$:

Assume $A \in \mathcal{A}^{+} \cap\left(-\mathcal{A}^{+}\right)$. Then we have that $\operatorname{sp}(A) \subseteq[0, \infty)$ and $\operatorname{sp}(A) \subseteq(-\infty, 0]$, i.e., $\operatorname{sp}(A)=\{0\}$. Since A is self-adjoint, hence normal, this implies that $\|A\|=r(A)=0$, i.e., $A=0$.

- If $A, B \in \mathcal{A}^{+}$and $A B=B A$, then $A B \in \mathcal{A}^{+}$:

Assume $A, B \in \mathcal{A}^{+}$and $A B=B A$. Then $A^{1 / 2} B=B A^{1 / 2}$, so
$A B=A^{1 / 2} A^{1 / 2} B=A^{1 / 2} B A^{1 / 2}$. Hence, for every $\xi \in H$, we have
$\langle A B \xi, \xi\rangle=\left\langle A^{1 / 2} B A^{1 / 2} \xi, \xi\right\rangle=\left\langle B A^{1 / 2} \xi, A^{1 / 2} \xi\right\rangle \geq 0$. Thus, $A B \geq 0$.
b) An example with $H=\mathbb{C}^{2}$ where $A, B \in \mathcal{A}^{+}, A B \neq B A$ and $A B \notin \mathcal{A}^{+}$is as follows:

Let $\left\{e_{1}, e_{2}\right\}$ denote the standard basis of \mathbb{C}^{2}. Let then $A, B \in \mathcal{B}\left(\mathbb{C}^{2}\right)$ be the operators satisfying $A e_{1}=e_{1}, A e_{2}=2 e_{2}, B e_{1}=B e_{2}=e_{1}+e_{2}$. Then A and B are self-adjoint (look at their standard matrices). Moreover, $\operatorname{sp}(A)=\{1,2\}$ and $\operatorname{sp}(B)=\{0,2\}$ (since $B\left(e_{1}-e_{2}\right)=0$ and $\left.B\left(e_{1}+e_{2}\right)=2\left(e_{1}+e_{2}\right)\right)$. Thus, $A, B \in \mathcal{A}^{+}$. As $A B e_{1}=e_{1}+2 e_{2}$, while $B A e_{1}=e_{1}+e_{2}$, we have $A B \neq B A$. Now, $(A B)^{*}=B^{*} A^{*}=B A \neq A B$, so $A B$ is not self-adjoint. Thus, $A B \notin \mathcal{A}^{+}$.

Exercise 50

Let V be a complex vector space and $L: V \times V \rightarrow \mathbb{C}$ be a sesquilinear form on V, i.e., L is linear in the first variable and conjugate-linear in the second.
a) We have:

$$
L(v, w)=\frac{1}{4} \sum_{k=0}^{3} i^{k} L\left(v+i^{k} w, v+i^{k} w\right) \quad \text { for all } v, w \in V
$$

(This is called the polarization identity.)
Indeed, a lengthy computation gives that

$$
L(v+w, v+w)+i L(v+i w, v+i w)-L(v-w, v-w)-i L(v-i w, v-i w)=\cdots=4 L(v, w)
$$

Hence, if L^{\prime} is a sesquilinear form on V such that $L^{\prime}(v, v)=L(v, v)$ for all $v \in V$, then $L^{\prime}=L$, since the polarization identity gives that

$$
L^{\prime}(v, w)=\frac{1}{4} \sum_{k=0}^{3} i^{k} L^{\prime}\left(v+i^{k} w, v+i^{k} w\right)=\frac{1}{4} \sum_{k=0}^{3} i^{k} L\left(v+i^{k} w, v+i^{k} w\right)=L(v, w)
$$

for all $v, w \in V$.
b) Define $L^{*}: V \times V \rightarrow \mathbb{C}$ by $L^{*}(v, w):=\overline{L(w, v)}$ for all $v, w \in V$. Then L^{*} is also a sesquilinear form on V : This is straightforward.

It follows that L is self-adjoint, that is, $L^{*}=L$, if and only if $L(v, v) \in \mathbb{R}$ for all $v \in V$:
Assume $L^{*}=L$. Let $v \in V$. Then $L(v, v)=L^{*}(v, v)=\overline{L(v, v)}$, so $L(v, v) \in \mathbb{R}$. This shows the forward implication.
Conversely, assume $L(v, v) \in \mathbb{R}$ for all $v \in V$. Let $v, w \in V$. Then, using the polarization identity, we get that

$$
\begin{gathered}
L^{*}(v, w)=\frac{1}{4} \sum_{k=0}^{3} i^{k} L^{*}\left(v+i^{k} w, v+i^{k} w\right)=\frac{1}{4} \sum_{k=0}^{3} i^{k} \overline{L\left(v+i^{k} w, v+i^{k} w\right)} \\
=\frac{1}{4} \sum_{k=0}^{3} i^{k} L\left(v+i^{k} w, v+i^{k} w\right)=L(v, w)
\end{gathered}
$$

c) Let H be a complex Hilbert space, $S \in \mathcal{B}(H)$ and let $L_{S}: H \times H \rightarrow \mathbb{C}$ denote the sesquilinear form on H given by $L_{S}(\xi, \eta):=\langle S(\xi), \eta\rangle$ for all $\xi, \eta \in H$.
We have that $\left(L_{S}\right)^{*}=L_{S^{*}}$:
Let $\xi, \eta \in H$. Then

$$
\left(L_{S}\right)^{*}(\xi, \eta)=\overline{L_{S}(\eta, \xi)}=\overline{\langle S(\eta), \xi\rangle}=\langle\xi, S(\eta)\rangle=\left\langle S^{*}(\xi), \eta\right\rangle
$$

This shows the claim.
It follows that L_{S} is self-adjoint if and only if S is self-adjoint, if and only if $\langle S(\xi), \xi\rangle \in \mathbb{R}$ for all $\xi \in H$:

The first equivalence follows readily from the claim above. The second equivalence is an immediate consequence of the second statement in b) (applied to L_{S}).

