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Exercise 51

Let H be a complex Hilbert space.

a) Assume that T ∈ B(H) is normal, g ∈ Bb(sp(T )) and f ∈ C(Ω), where Ω is a compact subset
of C containing g(sp(T )).

Then we have (f ◦ g)(T ) = f(g(T )):

Set P := {p : Ω→ C : p is a polynomial in z and z}. Then it is straightforward to check that
(p ◦ g)(T ) = p(g(T )) for every p ∈ P. Now it follows readily from the complex Stone-Weierstrass
theorem that P is dense in C(Ω) (w.r.t. ‖ · ‖∞). We can therefore pick a sequence {pn} in P such
that pn → f as n→∞ (w.r.t. ‖ · ‖∞). Then pn(g(T ))→ f(g(T )) as n→∞ (w.r.t. operator
norm, hence also w.r.t. the SOT).

On the other hand, sup ‖pn‖∞ <∞ (since {pn} is convergent w.r.t. ‖ · ‖∞), so {pn ◦ g} is a
bounded sequence of bounded Borel functions on sp(T ) converging pointwise to f ◦ g. Hence by
the continuity property of the Borel functional calculus, we also get that (pn ◦ g)(T )→ (f ◦ g)(T )
as n→∞ (w.r.t. the SOT).

As pn(g(T )) = (pn ◦ g)(T ) for every n ∈ N, we can conclude that the two limits are the same,
i.e., f(g(T )) = (f ◦ g)(T ), as desired.

b) Let U ∈ B(H) be unitary. It follows, using a), that there exists a self-adjoint operator
Θ ∈ B(H) such that U = exp(iΘ):

Define f : [0, 2π)→ T by f(t) = exp(it). Then f is bijective and continuous, and its inverse
function h = f−1 : T→ [0, 2π) is Borel measurable and bounded. Since sp(U) is a closed subset of
T, the function g := h|sp(U) belongs to Bb(sp(U)), so we can define Θ ∈ B(H) by Θ = g(U). Since
g is real-valued, Θ is self-adjoint. Using a), we get

U = id(U) = (f ◦ g)(U) = f(g(U)) = f(Θ) = exp(iΘ).

Exercise 52

Let H be a complex Hilbert space and T ∈ B(H) be normal. Let A 7→ P (A) denote the

projection-valued measure associated with T (so P (A) := 1
sp(T )
A (T ) for every Borel subset A of

sp(T )). Moreover, let λ ∈ C and set B(λ, ε) := {λ′ ∈ C : |λ′ − λ| < ε}.

a) The following holds:

λ ∈ sp(T )⇔ P
(
B(λ, ε) ∩ sp(T )

)
6= 0 for all ε > 0 .

A more general result is true: see Proposition 4.5.10 in Pedersen’s book. Choosing the function f
to be equal to id on sp(T ) in the proof of this result gives a proof of the statement above.

b) Let λ ∈ sp(T ). Then we have:

λ is an eigenvalue of T ⇔ P
(
{λ}

)
6= 0,

in which case P
(
{λ}

)
is the orthogonal projection from H onto the eigenspace ETλ = ker(λI − T ).

For a more general result, see the second part of Proposition 4.5.10 in Pedersen’s book. You can
find a direct proof of the statement above in Enstad’s notes (see Proposition 4.7.3 (b) and its
proof).
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Exercise 53

Let H be a complex Hilbert space and (X,M) be a measure space. Assume that A 7→ P (A) is a
map from M into B(H) such that P (A) is an orthogonal projection for every A ∈M, P (∅) = 0,
and P (X) = I. Consider the following conditions:

i) For every ξ ∈ H and every sequence {Aj}j∈N of pairwise disjoint sets in M we have that

P
( ∞⋃
j=1

Aj
)
ξ =

∞∑
j=1

P (Aj) ξ .

ii) For every ξ, η ∈ H the map µξ,η :M→ C defined by

µξ,η(A) =
〈
P (A)ξ, η

〉
for all A ∈M

is a complex measure on (X,M).

a) Assume that i) holds. Then ii) holds:

Let ξ, η ∈ H. First, we have µξ,η(∅) =
〈
P (∅)ξ, η

〉
=
〈
0 ξ, η

〉
= 0. Next, let {Aj}j∈N be a sequence

of pairwise disjoint sets in M. Then

µξ,η
( ∞⋃
j=1

Aj
)

=
〈
P
( ∞⋃
j=1

Aj
)
ξ, η
〉

=
〈 ∞∑
j=1

P (Aj) ξ, η
〉

=

∞∑
j=1

〈
P (Aj) ξ, η

〉
=

∞∑
j=1

µξ,η
(
Aj
)
.

Hence ii) holds.

Moreover, we have ‖µξ,η‖ ≤ ‖ξ‖ ‖η‖ for all ξ, η ∈ H:

Let ξ, η ∈ H. By definition, we have

‖µξ,η‖ = |µξ,η|(Ω) = sup
{ N∑
n=1

∣∣µξ,η(En)
∣∣} = sup

{ N∑
n=1

∣∣〈P (En)ξ, η〉
∣∣}

where the sup’s are taken over all finite measurable partitions E1, . . . , EN of Ω.

Consider such a partition E1, . . . , EN . For each n, let λn ∈ T be such that∣∣〈P (En)ξ, η〉
∣∣ = λn 〈P (En)ξ, η〉.

Then we have

0 ≤
N∑
n=1

∣∣〈P (En)ξ, η〉
∣∣ =

N∑
n=1

λn〈P (En)ξ, η〉 = 〈Tξ, η〉,

where T :=
∑N

n=1 λn P (En) ∈ B(H). Note that

P (Em)P (En) = P (Em ∩ En = P (∅) = 0

for all m 6= n. Hence,

‖T‖2 = ‖T ∗T‖ =
∥∥( N∑

m=1

λm P (Em)
)∗( N∑

n=1

λn P (En)
)∥∥ =

∥∥ N∑
m,n=1

λmλn P (Em)P (En)
∥∥

=
∥∥ N∑
n=1

P (En)
∥∥ =

∥∥P (Ω)‖ = ‖IH‖ = 1.
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So ‖T‖ = 1. Thus, using the Cauchy-Schwarz inequality, we get

N∑
n=1

∣∣〈P (En)ξ, η〉
∣∣ =

∣∣〈Tξ, η〉∣∣ ≤ ‖T‖ ‖ξ‖ ‖η‖ = ‖ξ‖ ‖η‖.

Taking the sup over all finite measurable partitions E1, . . . , EN of Ω, we get

‖µξ,η‖ ≤ ‖ξ‖ ‖η‖,

as claimed.

b) Assume that i) holds. Then we have:

P (A ∩B) = P (A)P (B) for all A,B ∈M.

Let us first note that it follows readily from i) that P is finitely additive, that is,

P (E ∪ F ) = P (E) ∪ P (F ) whenever E,F ∈M are disjoint.

This implies that P is monotone, that is,

P (A) ≤ P (B) whenever A,B ∈M and A ⊆ B,

since we then have

P (B) = P (A ∪ (B \A)) = P (A) + P (B \A) ≥ P (A).

We will also use that if Q,R are orthogonal projections in B(H), then Q ≤ R ⇒ RQ = Q = QR
(the first equality holds because the range of Q is then contained in the range of R; the second
follows by taking the adjoint).

Now let A,B ∈M. Then

P (A ∪B) = P (A ∪ (B \A)) = P (A) + P (B \A)

and P (B) = P
(
(B \A) ∪ (A ∩B)

)
= P (B \A) + P (A ∩B).

Thus P (A ∪B) + P (A ∩B) = P (A) + P (B \A) + P (A ∩B) = P (A) + P (B).

Multipliying with P (A) from the left, we get

P (A)P (A ∪B) + P (A)P (A ∩B) = P (A) + P (A)P (B).

Since A ⊆ (A ∪B), we have P (A) ⊆ P (A ∪B), so P (A)P (A ∪B) = P (A).

Similarly, since (A ∩B) ⊆ A, we have P (A)P (A ∩B) = P (A ∩B).

Hence we get that P (A) +P (A∩B) = P (A) +P (A)P (B), i.e., P (A∩B) = P (A)P (B), as desired.
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