MAT4450-Spring 2024 - Solutions of exercises - Set 13

Exercise 51

Let H be a complex Hilbert space.
a) Assume that $T \in \mathcal{B}(H)$ is normal, $g \in B_{b}(\operatorname{sp}(T))$ and $f \in C(\Omega)$, where Ω is a compact subset of \mathbb{C} containing $g(\operatorname{sp}(T))$.

Then we have $(f \circ g)(T)=f(g(T))$:
Set $\mathcal{P}:=\{p: \Omega \rightarrow \mathbb{C}: p$ is a polynomial in z and $\bar{z}\}$. Then it is straightforward to check that $(p \circ g)(T)=p(g(T))$ for every $p \in \mathcal{P}$. Now it follows readily from the complex Stone-Weierstrass theorem that \mathcal{P} is dense in $C(\Omega)$ (w.r.t. $\|\cdot\|_{\infty}$). We can therefore pick a sequence $\left\{p_{n}\right\}$ in \mathcal{P} such that $p_{n} \rightarrow f$ as $n \rightarrow \infty$ (w.r.t. $\|\cdot\|_{\infty}$). Then $p_{n}(g(T)) \rightarrow f(g(T))$ as $n \rightarrow \infty$ (w.r.t. operator norm, hence also w.r.t. the SOT).

On the other hand, $\sup \left\|p_{n}\right\|_{\infty}<\infty\left(\right.$ since $\left\{p_{n}\right\}$ is convergent w.r.t. $\left.\|\cdot\|_{\infty}\right)$, so $\left\{p_{n} \circ g\right\}$ is a bounded sequence of bounded Borel functions on $\operatorname{sp}(T)$ converging pointwise to $f \circ g$. Hence by the continuity property of the Borel functional calculus, we also get that $\left(p_{n} \circ g\right)(T) \rightarrow(f \circ g)(T)$ as $n \rightarrow \infty$ (w.r.t. the SOT).

As $p_{n}(g(T))=\left(p_{n} \circ g\right)(T)$ for every $n \in \mathbb{N}$, we can conclude that the two limits are the same, i.e., $f(g(T))=(f \circ g)(T)$, as desired.
b) Let $U \in \mathcal{B}(H)$ be unitary. It follows, using a), that there exists a self-adjoint operator $\Theta \in \mathcal{B}(H)$ such that $U=\exp (i \Theta)$:

Define $f:[0,2 \pi) \rightarrow \mathbb{T}$ by $f(t)=\exp (i t)$. Then f is bijective and continuous, and its inverse function $h=f^{-1}: \mathbb{T} \rightarrow[0,2 \pi)$ is Borel measurable and bounded. Since $\operatorname{sp}(U)$ is a closed subset of \mathbb{T}, the function $g:=h_{\mid \operatorname{sp}(U)}$ belongs to $B_{b}(\operatorname{sp}(U))$, so we can define $\Theta \in \mathcal{B}(H)$ by $\Theta=g(U)$. Since g is real-valued, Θ is self-adjoint. Using a), we get

$$
U=\operatorname{id}(U)=(f \circ g)(U)=f(g(U))=f(\Theta)=\exp (i \Theta)
$$

Exercise 52

Let H be a complex Hilbert space and $T \in \mathcal{B}(H)$ be normal. Let $A \mapsto P(A)$ denote the projection-valued measure associated with T (so $P(A):=1_{A}^{\operatorname{sp}(T)}(T)$ for every Borel subset A of $\operatorname{sp}(T))$. Moreover, let $\lambda \in \mathbb{C}$ and set $B(\lambda, \varepsilon):=\left\{\lambda^{\prime} \in \mathbb{C}:\left|\lambda^{\prime}-\lambda\right|<\varepsilon\right\}$.
a) The following holds:

$$
\lambda \in \operatorname{sp}(T) \Leftrightarrow P(B(\lambda, \varepsilon) \cap \operatorname{sp}(T)) \neq 0 \text { for all } \varepsilon>0
$$

A more general result is true: see Proposition 4.5.10 in Pedersen's book. Choosing the function f to be equal to id on $\operatorname{sp}(T)$ in the proof of this result gives a proof of the statement above.
b) Let $\lambda \in \operatorname{sp}(T)$. Then we have:

$$
\lambda \text { is an eigenvalue of } T \Leftrightarrow P(\{\lambda\}) \neq 0,
$$

in which case $P(\{\lambda\})$ is the orthogonal projection from H onto the eigenspace $E_{\lambda}^{T}=\operatorname{ker}(\lambda I-T)$.
For a more general result, see the second part of Proposition 4.5.10 in Pedersen's book. You can find a direct proof of the statement above in Enstad's notes (see Proposition 4.7 .3 (b) and its proof).

Exercise 53

Let H be a complex Hilbert space and (X, \mathcal{M}) be a measure space. Assume that $A \mapsto P(A)$ is a map from \mathcal{M} into $\mathcal{B}(H)$ such that $P(A)$ is an orthogonal projection for every $A \in \mathcal{M}, P(\emptyset)=0$, and $P(X)=I$. Consider the following conditions:
i) For every $\xi \in H$ and every sequence $\left\{A_{j}\right\}_{j \in \mathbb{N}}$ of pairwise disjoint sets in \mathcal{M} we have that

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right) \xi=\sum_{j=1}^{\infty} P\left(A_{j}\right) \xi
$$

ii) For every $\xi, \eta \in H$ the map $\mu_{\xi, \eta}: \mathcal{M} \rightarrow \mathbb{C}$ defined by

$$
\mu_{\xi, \eta}(A)=\langle P(A) \xi, \eta\rangle \quad \text { for all } A \in \mathcal{M}
$$

is a complex measure on (X, \mathcal{M}).
a) Assume that i) holds. Then ii) holds:

Let $\xi, \eta \in H$. First, we have $\mu_{\xi, \eta}(\emptyset)=\langle P(\emptyset) \xi, \eta\rangle=\langle 0 \xi, \eta\rangle=0$. Next, let $\left\{A_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{M}. Then

$$
\mu_{\xi, \eta}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\left\langle P\left(\bigcup_{j=1}^{\infty} A_{j}\right) \xi, \eta\right\rangle=\left\langle\sum_{j=1}^{\infty} P\left(A_{j}\right) \xi, \eta\right\rangle=\sum_{j=1}^{\infty}\left\langle P\left(A_{j}\right) \xi, \eta\right\rangle=\sum_{j=1}^{\infty} \mu_{\xi, \eta}\left(A_{j}\right) .
$$

Hence ii) holds.
Moreover, we have $\left\|\mu_{\xi, \eta}\right\| \leq\|\xi\|\|\eta\|$ for all $\xi, \eta \in H$:
Let $\xi, \eta \in H$. By definition, we have

$$
\left\|\mu_{\xi, \eta}\right\|=\left|\mu_{\xi, \eta}\right|(\Omega)=\sup \left\{\sum_{n=1}^{N}\left|\mu_{\xi, \eta}\left(E_{n}\right)\right|\right\}=\sup \left\{\sum_{n=1}^{N}\left|\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle\right|\right\}
$$

where the sup's are taken over all finite measurable partitions E_{1}, \ldots, E_{N} of Ω.
Consider such a partition E_{1}, \ldots, E_{N}. For each n, let $\lambda_{n} \in \mathbb{T}$ be such that

$$
\left|\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle\right|=\lambda_{n}\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle .
$$

Then we have

$$
0 \leq \sum_{n=1}^{N}\left|\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle\right|=\sum_{n=1}^{N} \lambda_{n}\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle=\langle T \xi, \eta\rangle,
$$

where $T:=\sum_{n=1}^{N} \lambda_{n} P\left(E_{n}\right) \in \mathcal{B}(H)$. Note that

$$
P\left(E_{m}\right) P\left(E_{n}\right)=P\left(E_{m} \cap E_{n}=P(\emptyset)=0\right.
$$

for all $m \neq n$. Hence,

$$
\begin{gathered}
\|T\|^{2}=\left\|T^{*} T\right\|=\left\|\left(\sum_{m=1}^{N} \lambda_{m} P\left(E_{m}\right)\right)^{*}\left(\sum_{n=1}^{N} \lambda_{n} P\left(E_{n}\right)\right)\right\|=\left\|\sum_{m, n=1}^{N} \overline{\lambda_{m}} \lambda_{n} P\left(E_{m}\right) P\left(E_{n}\right)\right\| \\
=\left\|\sum_{n=1}^{N} P\left(E_{n}\right)\right\|=\|P(\Omega)\|=\left\|I_{H}\right\|=1
\end{gathered}
$$

So $\|T\|=1$. Thus, using the Cauchy-Schwarz inequality, we get

$$
\sum_{n=1}^{N}\left|\left\langle P\left(E_{n}\right) \xi, \eta\right\rangle\right|=|\langle T \xi, \eta\rangle| \leq\|T\|\|\xi\|\|\eta\|=\|\xi\|\|\eta\|
$$

Taking the sup over all finite measurable partitions E_{1}, \ldots, E_{N} of Ω, we get

$$
\left\|\mu_{\xi, \eta}\right\| \leq\|\xi\|\|\eta\|
$$

as claimed.
b) Assume that i) holds. Then we have:

$$
P(A \cap B)=P(A) P(B) \quad \text { for all } A, B \in \mathcal{M}
$$

Let us first note that it follows readily from i) that P is finitely additive, that is,

$$
P(E \cup F)=P(E) \cup P(F) \text { whenever } E, F \in \mathcal{M} \text { are disjoint. }
$$

This implies that P is monotone, that is,

$$
P(A) \leq P(B) \text { whenever } A, B \in \mathcal{M} \text { and } A \subseteq B
$$

since we then have

$$
P(B)=P(A \cup(B \backslash A))=P(A)+P(B \backslash A) \geq P(A)
$$

We will also use that if Q, R are orthogonal projections in $\mathcal{B}(H)$, then $Q \leq R \Rightarrow R Q=Q=Q R$ (the first equality holds because the range of Q is then contained in the range of R; the second follows by taking the adjoint).
Now let $A, B \in \mathcal{M}$. Then

$$
P(A \cup B)=P(A \cup(B \backslash A))=P(A)+P(B \backslash A)
$$

and

$$
P(B)=P((B \backslash A) \cup(A \cap B))=P(B \backslash A)+P(A \cap B)
$$

Thus $\quad P(A \cup B)+P(A \cap B)=P(A)+P(B \backslash A)+P(A \cap B)=P(A)+P(B)$.
Multipliying with $P(A)$ from the left, we get

$$
P(A) P(A \cup B)+P(A) P(A \cap B)=P(A)+P(A) P(B)
$$

Since $A \subseteq(A \cup B)$, we have $P(A) \subseteq P(A \cup B)$, so $P(A) P(A \cup B)=P(A)$.
Similarly, since $(A \cap B) \subseteq A$, we have $P(A) P(A \cap B)=P(A \cap B)$.
Hence we get that $P(A)+P(A \cap B)=P(A)+P(A) P(B)$, i.e., $P(A \cap B)=P(A) P(B)$, as desired.

