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Exercise 54

Let H be a Hilbert space (over C) and T ∈ B(H). Let T = U |T | be the polar decomposition of T .

a) The following relations hold :

• U∗U |T | = |T |

• U∗T = |T |

• UU∗T = T

• |T ∗| = U |T |U∗

• T ∗ = U∗|T ∗|, and this gives the polar decomposition of T ∗.

We have seen in the lecture that U∗U is the orthogonal projection of H onto |T |(H), while UU∗

is the orthogonal projection of H onto T (H).
This gives that

U∗U |T |ξ = |T |ξ and UU∗Tξ = Tξ

for all ξ ∈ H, hence that U∗U |T | = |T | and UU∗T = T . This implies that U∗T = U∗U |T [= |T |.
Moreover, since

|T ∗|2 = TT ∗ = U |T |(U |T |)∗ = U |T | |T |U∗ = U |T |U∗U |T |U∗ = (U |T |U∗)2,

and U |T |U∗ ≥ 0 (because 〈U |T |U∗ξ, ξ〉 = 〈|T |U∗ξ, U∗ξ〉 ≥ 0 for all ξ ∈ H), we get that
|T ∗| = U |T |U∗ (by the uniqueness property of square roots). Finally, using this, we get

T ∗ = (U |T |)∗ = |T |U∗ = U∗U |T |U∗ = U∗|T ∗|.

Then U∗ is a partial isometry. Further, since the final space of U is T (H), we have that
ker(U∗) = U(H)⊥ = T (H)⊥ = ker(T ∗). So T ∗ = U∗|T ∗| is the polar decomposition of T ∗ (by the
uniqueness property of polar decomposition).

b) Assume that T is invertible. Then U is unitary :

Since T is invertible, we have ker(T ) = {0} and T (H) = H, hence T (H) = H. So U∗U is the
orthogonal projection of H onto

|T |(H) = ker(|T |)⊥ = ker(T )⊥ = {0}⊥ = H,

that is, U∗U = IH . Moreover, UU∗ is the orthogonal projection of H onto T (H) = H, i.e.,
UU∗ = IH . Thus, U is unitary.

Exercise 55

Let H be a Hilbert space (over C) and let T ∈ B(H). We describe the polar decomposition of T in
the following cases:

• T ≥ 0

We then have that |T | = T . Moreover, the partial isometry U restricts to the identity

operator on T (H) and is zero on T (H)
⊥

. Hence U is the orthogonal projection of H onto
T (H).
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• T is an orthogonal projection

This is a special case of the case above. We then get that |T | = T and U = T .

• T is a partial isometry

We then have that T ∗T is an orthogonal projection. So |T | = (T ∗T )1/2 = T ∗T . Moreover,
T ∗T is the orthogonal projection of H onto T (H). Thus, T = T T ∗T = T |T |, and this is the
polar decomposition of T (by the uniqueness property), i.e., U = T

• T is an isometry

This is a special case of the case above. We then get that U = T and |T | = IH .

Exercise 56

Assume H is a separable infinite-dimensional Hilbert space (over C), and let {ej : j ∈ N} be an
o.n.b. for H. Let S ∈ B(H) denote the (unilateral) shift-operator associated with this basis, so S
is determined by S(ej) = ej+1 for all j ∈ N. Let n ∈ N. The following facts hold :

• Sn is an isometry with range Hn := {e1, . . . , en}⊥

It should be well-known that S is an isometry, but here is the argument. Let ξ ∈ H. Then

S(ξ) = S
(∑

j∈N
〈ξ, ej〉 ej

)
=
∑
j∈N
〈ξ, ej〉S(ej) =

∑
j∈N
〈ξ, ej〉 ej+1.

Since {ej+1}j∈N is an orthonormal set in H, we get that

‖S(ξ)‖2 =
∥∥∥∑

j∈N
〈ξ, ej〉 ej+1

∥∥∥2 =
∑
j∈N

∣∣〈ξ, ej〉∣∣2 = ‖ξ‖2,

which proves the claim.

The product of two isometries is easily seen to be an isometry. It readily follows that Sn is
an isometry.

Moreover, using the formula for S(ξ) above, we deduce that

Sn(ξ) =
∑
j∈N
〈ξ, ej〉 ej+n.

Thus, if Hn denotes the range of Sn, this implies that Hn is contained in span{ej+n, j ∈ N}.
On the other hand, since ej+n = S(ej) for each j ∈ N, we get that span{ej+n, j ∈ N} ⊆ Hn.
As Sn is an isometry, its range Hn is complete, hence closed. Thus, we get that
span{ej+n, j ∈ N} ⊆ Hn. Altogether, we conclude that Hn = span{ej+n, j ∈ N}.

As {e1, . . . , en}⊥ = span{ej+n, j ∈ N}, this shows that Hn = {e1, . . . , en}⊥, as desired.

• (Sn)∗ = (S∗)n is a partial isometry with initial space Hn and final space H

The operator Sn, being an isometry, is a partial isometry with initial space H and final
space Hn. Thus, as seen in a lecture, this implies that (Sn)∗ is a partial isometry with
initial space Hn and final space H.
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