MAT4450 - Spring 2024 - Solutions of exercises - Set 14

Exercise 54

Let *H* be a Hilbert space (over \mathbb{C}) and $T \in \mathcal{B}(H)$. Let T = U |T| be the polar decomposition of *T*. a) The following relations hold:

- $U^*U|T| = |T|$
- $U^*T = |T|$
- $UU^*T = T$
- $|T^*| = U|T|U^*$
- $T^* = U^* |T^*|$, and this gives the polar decomposition of T^* .

We have seen in the lecture that U^*U is the orthogonal projection of H onto $\overline{|T|(H)}$, while UU^* is the orthogonal projection of H onto $\overline{T(H)}$. This gives that

$$U^*U|T|\xi = |T|\xi$$
 and $UU^*T\xi = T\xi$

for all $\xi \in H$, hence that $U^*U|T| = |T|$ and $UU^*T = T$. This implies that $U^*T = U^*U|T| = |T|$. Moreover, since

$$|T^*|^2 = TT^* = U|T|(U|T|)^* = U|T||T|U^* = U|T||U^*U|T||U^* = (U|T|U^*)^2,$$

and $U|T|U^* \ge 0$ (because $\langle U|T|U^*\xi, \xi \rangle = \langle |T|U^*\xi, U^*\xi \rangle \ge 0$ for all $\xi \in H$), we get that $|T^*| = U|T|U^*$ (by the uniqueness property of square roots). Finally, using this, we get

$$T^* = (U|T|)^* = |T| U^* = U^* U|T| U^* = U^*|T^*|.$$

Then U^* is a partial isometry. Further, since the final space of U is T(H), we have that $\ker(U^*) = U(H)^{\perp} = T(H)^{\perp} = \ker(T^*)$. So $T^* = U^*|T^*|$ is the polar decomposition of T^* (by the uniqueness property of polar decomposition).

b) Assume that T is invertible. Then U is unitary:

Since T is invertible, we have $\ker(T) = \{0\}$ and T(H) = H, hence $\overline{T(H)} = H$. So U^*U is the orthogonal projection of H onto

$$\overline{|T|(H)} = \ker(|T|)^{\perp} = \ker(T)^{\perp} = \{0\}^{\perp} = H,$$

that is, $U^*U = I_H$. Moreover, UU^* is the orthogonal projection of H onto $\overline{T(H)} = H$, i.e., $UU^* = I_H$. Thus, U is unitary.

Exercise 55

Let H be a Hilbert space (over \mathbb{C}) and let $T \in \mathcal{B}(H)$. We describe the polar decomposition of T in the following cases:

• $T \ge 0$

We then have that |T| = T. Moreover, the partial isometry U restricts to the identity operator on $\overline{T(H)}$ and is zero on $\overline{T(H)}^{\perp}$. Hence U is the orthogonal projection of H onto $\overline{T(H)}$.

• T is an orthogonal projection

This is a special case of the case above. We then get that |T| = T and U = T.

• T is a partial isometry

We then have that T^*T is an orthogonal projection. So $|T| = (T^*T)^{1/2} = T^*T$. Moreover, T^*T is the orthogonal projection of H onto $\overline{T(H)}$. Thus, $T = T T^*T = T |T|$, and this is the polar decomposition of T (by the uniqueness property), i.e., U = T

• T is an isometry

This is a special case of the case above. We then get that U = T and $|T| = I_H$.

Exercise 56

Assume *H* is a separable infinite-dimensional Hilbert space (over \mathbb{C}), and let $\{e_j : j \in \mathbb{N}\}$ be an o.n.b. for *H*. Let $S \in \mathcal{B}(H)$ denote the (unilateral) shift-operator associated with this basis, so *S* is determined by $S(e_j) = e_{j+1}$ for all $j \in \mathbb{N}$. Let $n \in \mathbb{N}$. The following facts hold:

• S^n is an isometry with range $H_n := \{e_1, \ldots, e_n\}^{\perp}$

It should be well-known that S is an isometry, but here is the argument. Let $\xi \in H$. Then

$$S(\xi) = S\Big(\sum_{j \in \mathbb{N}} \langle \xi, e_j \rangle e_j\Big) = \sum_{j \in \mathbb{N}} \langle \xi, e_j \rangle S(e_j) = \sum_{j \in \mathbb{N}} \langle \xi, e_j \rangle e_{j+1}$$

Since $\{e_{j+1}\}_{j\in\mathbb{N}}$ is an orthonormal set in H, we get that

$$||S(\xi)||^{2} = \left\| \sum_{j \in \mathbb{N}} \langle \xi, e_{j} \rangle e_{j+1} \right\|^{2} = \sum_{j \in \mathbb{N}} \left| \langle \xi, e_{j} \rangle \right|^{2} = ||\xi||^{2},$$

which proves the claim.

The product of two isometries is easily seen to be an isometry. It readily follows that S^n is an isometry.

Moreover, using the formula for $S(\xi)$ above, we deduce that

$$S^n(\xi) = \sum_{j \in \mathbb{N}} \langle \xi, e_j \rangle \, e_{j+n}.$$

Thus, if H_n denotes the range of S^n , this implies that H_n is contained in $\overline{\operatorname{span}\{e_{j+n}, j \in \mathbb{N}\}}$. On the other hand, since $e_{j+n} = S(e_j)$ for each $j \in \mathbb{N}$, we get that $\operatorname{span}\{e_{j+n}, j \in \mathbb{N}\} \subseteq H_n$. As S^n is an isometry, its range H_n is complete, hence closed. Thus, we get that $\overline{\operatorname{span}\{e_{j+n}, j \in \mathbb{N}\}} \subseteq H_n$. Altogether, we conclude that $H_n = \overline{\operatorname{span}\{e_{j+n}, j \in \mathbb{N}\}}$. As $\{e_1, \ldots, e_n\}^{\perp} = \overline{\operatorname{span}\{e_{j+n}, j \in \mathbb{N}\}}$, this shows that $H_n = \{e_1, \ldots, e_n\}^{\perp}$, as desired. • $(S^n)^* = (S^*)^n$ is a partial isometry with initial space H_n and final space H

The operator S^n , being an isometry, is a partial isometry with initial space H and final space H_n . Thus, as seen in a lecture, this implies that $(S^n)^*$ is a partial isometry with initial space H_n and final space H.