
MAT4450 - Spring 2024 - Solutions of exercises - Set 2

Exercise 6

Let X be a vector space (over F = R or C) and let S be a nonempty family of seminorms on
X. Let τS denote the weak topology on X induced by S. We recall that τS is the weak
topology on X determined by the family {ρ(σ,z)}(σ,z)∈S×X of real-valued functions, where
ρ(σ,z)(y) := σ(y − z) for all y ∈ X.

Let x ∈ X. For σ ∈ S and ε > 0, set Bσ
ε (x) := {y ∈ X : σ(y − x) < ε}.

Moreover, for z ∈ X, set V(σ,z), ε(x) := {y ∈ X : |σ(y − z)− σ(x− z)| < ε}.

a) Let z ∈ X and ε > 0 . Then V(σ,x), ε(x) = Bσ
ε (x) ⊆ V(σ,z), ε(x):

The equality on the left follows immediately from the definitions. To show the inclusion on the
right, let y ∈ Bσ

ε (x). Then

|σ(y − z)− σ(x− z)| ≤ σ
(
(y − z)− (x− z)

)
= σ(x− y) < ε,

so y ∈ V(σ,z), ε(x), as desired.

b) If F is a finite nonempty subset of S and ε > 0, we set

BF
ε (x) :=

⋂
σ∈F B

σ
ε (x) = {y ∈ X : σ(y − x) < ε for all σ ∈ F}.

Then the family Bx :=
{
BF
ε (x) : F is a finite nonempty subset of S and ε > 0

}
is a

neighborhood basis at x (for τS):

Using Exercise 5 we get that the family

Ux =
{ n⋂
k=1

V(xk,zk), εk(x) : n ∈ N, x1, z1, . . . , xn, zn ∈ X and ε1, . . . , εn > 0
}

is a neighborhood basis at x (for τS). Using part a) we readily get that if U ∈ Ux (resp.
B ∈ Bx), then there exists B ∈ Bx (resp. U ∈ Ux) such that B ⊆ U (resp. U ⊆ B). The desired
assertion clearly follows.

Exercise 7

Let X = C(R,C) denote the vector space of all continuous complex functions on R, and let
S = {σK : K ⊆ R,K compact} be the family of seminorms on X given by

σK(f) := sup{|f(t)| : t ∈ K} (f ∈ X)

for each K ⊆ R,K compact.

Then this family of seminorms is separating :

Let f ∈ X, f 6= 0. We have to show that there exists some K ⊆ R,K compact, such that
σK(f) 6= 0. Pick t0 ∈ R such that f(t0) 6= 0, and set ε := |f(t0)|/2. By continuity of the
function |f |, we may find δ > 0 such that∣∣ |f(t)| − |f(t0)|

∣∣ < ε = |f(t0)|/2 whenever |t− t0| ≤ δ.

This implies that ε = |f(t0)|
2 < |f(t)| whenever t ∈ K := [t0 − δ, t0 + δ]. It follows

immediately that σK(f) > ε > 0, as desired.
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Exercise 8

Let X,X ′ be vector spaces (over the same field F). Let S (resp. S′) denote a family of
seminorms on X (resp. X ′) and let τ (resp. τ ′) denote the weak topology on X (resp. X ′)
induced by S (resp. S′).

Let T : X → X ′ be a linear map, and consider T as a map from (X, τ) to (X ′, τ ′).
Then the following statements are equivalent :

a) T is continuous on X;

b) T is continuous at 0;

c) For each σ′ ∈ S′ there exist a (nonempty) finite subset F of S and M > 0 such that

σ′
(
T (x)

)
≤ M max

σ∈F
{σ(x)} for all x ∈ X.

The implication a) ⇒ b) is trivial. To show that b) ⇒ c), assume that b) holds and let σ′ ∈ S′.
Set U ′ := σ′−1((−1, 1)) = {x′ ∈ X ′ : σ′(x′) < 1}, which is a τ ′-open neigborhood of 0 in X ′.
Since T (0) = 0 and T is continuous at 0, there exists a τ -open neigborhood U of 0 in X such
that T (U) ⊆ U ′.
Using Exercise 6, we can find a finite nonempty subset F of S and ε > 0 such that BF

ε (0) ⊆ U ,
i.e., {y ∈ X : σ(y) < ε for all σ ∈ F} ⊆ U .

Set M := 2/ε > 0. Let x ∈ X and set m(x) := max{σ(x) : σ ∈ F}. To show that c) holds it
suffices to check that σ′

(
T (x)

)
≤ Mm(x). There are two possibilities:

• m(x) > 0.

In this case, we have that 1
Mm(x) x = ε

2m(x) x ∈ B
F
ε (0) ⊆ U . Hence we get that

T
(

1
Mm(x) x

)
∈ U ′, i.e., 1

Mm(x) σ
′(T (x)) < 1, that is, σ′

(
T (x)

)
≤ Mm(x), as desired.

• m(x) = 0.

This means that σ(x) = 0 for every σ ∈ F , and we have to deduce that σ′(T (x)) = 0.
Let λ ∈ F. Then we have that σ(λx) = |λ|σ(x) = 0 < ε for all σ ∈ F . Thus
λx ∈ BF

ε (0) ⊆ U , so we get that T (λx) ∈ U ′. Hence |λ|σ′(T (x)) = σ′(T (λx)) < 1.
Since this is true for every λ ∈ F, we must have that σ′(T (x)) = 0, as desired.

We have thereby shown that b) ⇒ c).

Finally, assume that c) holds. Let x ∈ X and let {xα} be a net in X converging to x. To show
that a) holds, it suffices to show that T (xα)→α T (x), i.e., σ′

(
T (xα)− T (x)

)
→α 0 for every

σ′ ∈ S′, that is, σ′
(
T (xα − x)

)
→α 0 for every σ′ ∈ S′.

Let σ′ ∈ S′ and ε > 0. Using the assumption, we may pick a (nonempty) finite subset F of S
and M > 0 such that σ′

(
T (y)

)
≤ M maxσ∈F {σ(y)} for all y ∈ X. In particular, we have that

σ′
(
T (xα − x)

)
≤ M max

σ∈F
{σ(xα − x)} for all α.

We choose now α0 such that σ(xα − x) < ε/M for all σ ∈ F and all α & α0. Then we clearly
get that σ′

(
T (xα − x)

)
< ε for all α & α0, which shows that σ′

(
T (xα − x)

)
→α 0, as desired.

Thus we have shown that c) ⇒ a).
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Exercise 9

Let X be topological vector space and let ` : X → F be a linear functional. Then the following
conditions are equivalent:

a) ` is continuous on X.

b) ` is continuous at some point of X.

c) sup{Re `(u) | u ∈ U} <∞ for some nonempty open U ⊆ X.

d) inf{Re `(u) | u ∈ U} > −∞ for some nonempty open U ⊆ X.

e) sup{|`(u)| | u ∈ U} <∞ for some nonempty open U ⊆ X.

a)⇒ b): This implication is obvious.

b)⇒ c): Assume that ` is continuous at x0 ∈ X. Then ` is continuous at 0 ∈ X. Indeed, if
{yα} is a net in X converging to 0, then (x0 + yα)→α x0, so
`(x0) + `(yα) = `(x0 + yα)→α `(x0). Hence `(yα)→α 0 = `(0), and the claim follows.
This implies that Re ` is continuous at 0. In particular, there exists an open U ⊆ X such that
Re `(U) ⊆ (−1, 1), and it clearly follows that c) holds.

c)⇒ d): Assume that c) holds. So there exists some M ∈ R and some nonempty open U ⊆ X
such that Re `(U) ⊆ (−∞,M ]. Then we have Re `(−u) = −Re `(u) ∈ [−M,∞) for all u ∈ U .
Thus, V := −U is a nonempty open subset of X such that inf{Re `(v) | v ∈ V } ≥ −M > −∞,
showing that d) holds.

d)⇒ e): Assume that d) holds. We may assume that m := inf{Re `(u) | u ∈ U} > −∞ for
some nonempty open neighborhood U of 0 (because if it happens that 0 6∈ U , then we just pick
any x0 ∈ U , and replace U by U ′ = U − x0).
By continuity of multiplication by scalars, we may pick δ > 0 and a nonempty open V ⊆ X
such that λ v ∈ U for all λ ∈ Bδ(0) and all v ∈ V .
Let v ∈ V and pick r ∈ (0, δ). Then for all t ∈ R we have r eitv ∈ U . Thus we get

m ≤ Re
(
`(r eit v)

)
= Re

(
r eit `(v)

)
for all t ∈ R. Choosing t such that eit `(v) = −|`(v)| gives m ≤ −r |`(v)|, so |`(v)| ≤ −m/r.
Since this holds for every v ∈ V , we get

sup{ |`(v)| | v ∈ V } ≤ −m
r
<∞ ,

so e) holds.

e)⇒ a): Assume that e) holds. By translating U if necessary, we may assume that
M := sup{ |`(u)| | u ∈ U} <∞ for some nonempty open neighborhood U of 0.

Let x ∈ X. To show that ` is continuous at x, let {xi} be a net in X converging to x. Pick
0 < r < 1 and an open neighborhood V of 0 such that λ v ∈ U for all λ ∈ Br(0) and all v ∈ V .
Let ε > 0. Set

W := ε
( r

M + r + 1

)2
V .

Since W is an open neighborhood of 0, we may find i0 such that (xi − x) ∈W whenever i & i0.

Now, as r
M+r+1 < r, we have that r

M+r+1 V ⊆ U , which gives that W ⊆ ε r
M+r+1 U .
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Hence, we get that

(xi − x) ∈ ε r

M + r + 1
U whenever i & i0 .

Thus,

|`(xi)− `(x)| = |`(xi − x)| ≤ ε r

M + r + 1
M < εr < ε

whenever i & i0 . This shows that `(xi)→α `(x). Thus we have shown that ` is continuous at
x. It follows that a) holds.

Exercise 10

Let X be an infinite-dimensional normed space.

a) Let U be a weakly open neighborhood of 0 in X (i.e., 0 ∈ U ⊆ X and U ∈ τweak). Then U
contains an infinite-dimensional subspace of X.

If U = X, then the assertion is trivial. So we may assume that U 6= X. Exercise 6 gives that
there exist ε > 0 and ϕ1, . . . , ϕn ∈ X∗ such that

n⋂
j=1

{x ∈ X : |ϕj(x)| < ε} ⊆ U .

In particular, we have
⋂n
j=1 kerϕj ⊆ U 6= X. Now, consider the linear map L : X → Fn

defined by
L(x) =

(
ϕ1(x), . . . , ϕn(x)

)
for all x ∈ X. Then kerL =

⋂n
j=1 kerϕj ⊆ U , and L(X) 6= {0} (otherwise, all the ϕj ’s would

be equal to the zero functional on X, so we would have kerL = X ⊆ U 6= X, a contradiction).

We claim that the subspace kerL is infinite-dimensional:

Assume (for contradiction) that kerL is finite-dimensional. Since X is infinite-dimensional,
we must have that kerL 6= {0}. Pick a basis v1, . . . , vm for kerL and a basis r1, . . . , rp for
L(X) (so 1 ≤ p ≤ n). Next, pick u1, . . . , up ∈ X such that L(uk) = rk for k = 1, . . . , p. Then
one easily checks that X is spanned by the vectors u1, . . . , up, v1, . . . , vm. Hence X is finite-
dimensional, which gives a contradiction. Thus, kerL must be infinite-dimensional.

As kerL is contained in U , the desired assertion is proven.

b) The weak topology on X does not coincide with the norm topology.

Assume (for contradiction) that these two topologies agree. Let U denote the open unit ball in
X, i.e. U = {x ∈ X : ‖x‖ < 1}. Then the assumption gives that U is weakly open, so U
contains an infinite-dimensional subspace of X, say M . Pick v ∈M , v 6= 0. Then λ v ∈M for
every λ ∈ F, i.e., |λ| ‖v‖ = ‖λ v‖ < 1 for every λ ∈ F. This implies that |λ| < 1/‖v‖ for every
λ ∈ F, which is impossible.
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