MAT4450 - Spring 2024 - Solutions of exercises - Set 2

Exercise 6

Let X be a vector space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) and let S be a nonempty family of seminorms on X. Let τ_S denote the weak topology on X induced by S. We recall that τ_S is the weak topology on X determined by the family $\{\rho_{(\sigma,z)}\}_{(\sigma,z)\in S\times X}$ of real-valued functions, where $\rho_{(\sigma,z)}(y) := \sigma(y-z)$ for all $y \in X$. Let $x \in X$. For $\sigma \in S$ and $\varepsilon > 0$, set $B_{\varepsilon}^{\sigma}(x) := \{y \in X : \sigma(y-x) < \varepsilon\}$.

Moreover, for $z \in X$, set $V_{(\sigma,z),\varepsilon}(x) := \{y \in X : |\sigma(y-z) - \sigma(x-z)| < \varepsilon\}.$

a) Let $z \in X$ and $\varepsilon > 0$. Then $V_{(\sigma,x),\,\varepsilon}(x) = B^{\sigma}_{\varepsilon}(x) \subseteq V_{(\sigma,z),\,\varepsilon}(x)$:

The equality on the left follows immediately from the definitions. To show the inclusion on the right, let $y \in B^{\sigma}_{\varepsilon}(x)$. Then

$$|\sigma(y-z) - \sigma(x-z)| \le \sigma((y-z) - (x-z)) = \sigma(x-y) < \varepsilon,$$

so $y \in V_{(\sigma,z),\varepsilon}(x)$, as desired.

b) If F is a finite nonempty subset of S and $\varepsilon > 0$, we set

$$B^F_{\varepsilon}(x) := \bigcap_{\sigma \in F} B^{\sigma}_{\varepsilon}(x) = \{ y \in X : \sigma(y - x) < \varepsilon \text{ for all } \sigma \in F \}.$$

Then the family $\mathcal{B}_x := \{B_{\varepsilon}^F(x) : F \text{ is a finite nonempty subset of } S \text{ and } \varepsilon > 0\}$ is a neighborhood basis at x (for τ_S):

Using Exercise 5 we get that the family

$$\mathcal{U}_x = \left\{ \bigcap_{k=1}^n V_{(x_k, z_k), \varepsilon_k}(x) : n \in \mathbb{N}, x_1, z_1, \dots, x_n, z_n \in X \text{ and } \varepsilon_1, \dots, \varepsilon_n > 0 \right\}$$

is a neighborhood basis at x (for τ_S). Using part a) we readily get that if $U \in \mathcal{U}_x$ (resp. $B \in \mathcal{B}_x$), then there exists $B \in \mathcal{B}_x$ (resp. $U \in \mathcal{U}_x$) such that $B \subseteq U$ (resp. $U \subseteq B$). The desired assertion clearly follows.

Exercise 7

Let $X = C(\mathbb{R}, \mathbb{C})$ denote the vector space of all continuous complex functions on \mathbb{R} , and let $S = \{\sigma_K : K \subseteq \mathbb{R}, K \text{ compact}\}$ be the family of seminorms on X given by

$$\sigma_K(f) := \sup\{|f(t)| : t \in K\} \quad (f \in X)$$

for each $K \subseteq \mathbb{R}, K$ compact.

Then this family of seminorms is separating:

Let $f \in X$, $f \neq 0$. We have to show that there exists some $K \subseteq \mathbb{R}$, K compact, such that $\sigma_K(f) \neq 0$. Pick $t_0 \in \mathbb{R}$ such that $f(t_0) \neq 0$, and set $\varepsilon := |f(t_0)|/2$. By continuity of the function |f|, we may find $\delta > 0$ such that

$$||f(t)| - |f(t_0)|| < \varepsilon = |f(t_0)|/2$$
 whenever $|t - t_0| \le \delta$.

This implies that $\varepsilon = \frac{|f(t_0)|}{2} < |f(t)|$ whenever $t \in K := [t_0 - \delta, t_0 + \delta]$. It follows immediately that $\sigma_K(f) > \varepsilon > 0$, as desired.

Exercise 8

Let X, X' be vector spaces (over the same field \mathbb{F}). Let S (resp. S') denote a family of seminorms on X (resp. X') and let τ (resp. τ') denote the weak topology on X (resp. X') induced by S (resp. S').

Let $T: X \to X'$ be a linear map, and consider T as a map from (X, τ) to (X', τ') . Then the following statements are equivalent:

- a) T is continuous on X;
- b) T is continuous at 0;
- c) For each $\sigma' \in S'$ there exist a (nonempty) finite subset F of S and M > 0 such that

$$\sigma'(T(x)) \leq M \max_{\sigma \in F} \{\sigma(x)\} \text{ for all } x \in X.$$

The implication a) \Rightarrow b) is trivial. To show that b) \Rightarrow c), assume that b) holds and let $\sigma' \in S'$. Set $U' := \sigma'^{-1}((-1,1)) = \{x' \in X' : \sigma'(x') < 1\}$, which is a τ' -open neighborhood of 0 in X'. Since T(0) = 0 and T is continuous at 0, there exists a τ -open neighborhood U of 0 in X such that $T(U) \subseteq U'$.

Using Exercise 6, we can find a finite nonempty subset F of S and $\varepsilon > 0$ such that $B_{\varepsilon}^{F}(0) \subseteq U$, i.e., $\{y \in X : \sigma(y) < \varepsilon \text{ for all } \sigma \in F\} \subseteq U$.

Set $M := 2/\varepsilon > 0$. Let $x \in X$ and set $m(x) := \max\{\sigma(x) : \sigma \in F\}$. To show that c) holds it suffices to check that $\sigma'(T(x)) \leq M m(x)$. There are two possibilities:

• m(x) > 0.

In this case, we have that $\frac{1}{Mm(x)}x = \frac{\varepsilon}{2m(x)}x \in B_{\varepsilon}^{F}(0) \subseteq U$. Hence we get that $T\left(\frac{1}{Mm(x)}x\right) \in U'$, i.e., $\frac{1}{Mm(x)}\sigma'(T(x)) < 1$, that is, $\sigma'(T(x)) \leq Mm(x)$, as desired.

• m(x) = 0.

This means that $\sigma(x) = 0$ for every $\sigma \in F$, and we have to deduce that $\sigma'(T(x)) = 0$. Let $\lambda \in \mathbb{F}$. Then we have that $\sigma(\lambda x) = |\lambda| \sigma(x) = 0 < \varepsilon$ for all $\sigma \in F$. Thus $\lambda x \in B_{\varepsilon}^{F}(0) \subseteq U$, so we get that $T(\lambda x) \in U'$. Hence $|\lambda| \sigma'(T(x)) = \sigma'(T(\lambda x)) < 1$. Since this is true for every $\lambda \in \mathbb{F}$, we must have that $\sigma'(T(x)) = 0$, as desired.

We have thereby shown that $b \Rightarrow c$).

Finally, assume that c) holds. Let $x \in X$ and let $\{x_{\alpha}\}$ be a net in X converging to x. To show that a) holds, it suffices to show that $T(x_{\alpha}) \to_{\alpha} T(x)$, i.e., $\sigma'(T(x_{\alpha}) - T(x)) \to_{\alpha} 0$ for every $\sigma' \in S'$, that is, $\sigma'(T(x_{\alpha} - x)) \to_{\alpha} 0$ for every $\sigma' \in S'$.

Let $\sigma' \in S'$ and $\varepsilon > 0$. Using the assumption, we may pick a (nonempty) finite subset F of S and M > 0 such that $\sigma'(T(y)) \leq M \max_{\sigma \in F} \{\sigma(y)\}$ for all $y \in X$. In particular, we have that

$$\sigma'(T(x_{\alpha}-x)) \leq M \max_{\sigma \in F} \{\sigma(x_{\alpha}-x)\} \text{ for all } \alpha.$$

We choose now α_0 such that $\sigma(x_\alpha - x) < \varepsilon/M$ for all $\sigma \in F$ and all $\alpha \gtrsim \alpha_0$. Then we clearly get that $\sigma'(T(x_\alpha - x)) < \varepsilon$ for all $\alpha \gtrsim \alpha_0$, which shows that $\sigma'(T(x_\alpha - x)) \to_\alpha 0$, as desired. Thus we have shown that $c) \Rightarrow a$.

Exercise 9

Let X be topological vector space and let $\ell : X \to \mathbb{F}$ be a linear functional. Then the following conditions are equivalent:

- a) ℓ is continuous on X.
- b) ℓ is continuous at some point of X.
- c) $\sup \{\operatorname{Re} \ell(u) \mid u \in U\} < \infty$ for some nonempty open $U \subseteq X$.
- d) $\inf \{ \operatorname{Re} \ell(u) \mid u \in U \} > -\infty$ for some nonempty open $U \subseteq X$.
- e) $\sup\{|\ell(u)| \mid u \in U\} < \infty$ for some nonempty open $U \subseteq X$.

 $a) \Rightarrow b$: This implication is obvious.

b) \Rightarrow c): Assume that ℓ is continuous at $x_0 \in X$. Then ℓ is continuous at $0 \in X$. Indeed, if $\{y_\alpha\}$ is a net in X converging to 0, then $(x_0 + y_\alpha) \rightarrow_\alpha x_0$, so

 $\ell(x_0) + \ell(y_\alpha) = \ell(x_0 + y_\alpha) \to_\alpha \ell(x_0)$. Hence $\ell(y_\alpha) \to_\alpha 0 = \ell(0)$, and the claim follows. This implies that $\operatorname{Re} \ell$ is continuous at 0. In particular, there exists an open $U \subseteq X$ such that

 $\operatorname{Re} \ell(U) \subseteq (-1, 1)$, and it clearly follows that c) holds.

 $(c) \Rightarrow d$): Assume that c) holds. So there exists some $M \in \mathbb{R}$ and some nonempty open $U \subseteq X$ such that $\operatorname{Re} \ell(U) \subseteq (-\infty, M]$. Then we have $\operatorname{Re} \ell(-u) = -\operatorname{Re} \ell(u) \in [-M, \infty)$ for all $u \in U$. Thus, V := -U is a nonempty open subset of X such that $\inf \{ \operatorname{Re} \ell(v) \mid v \in V \} \geq -M > -\infty$, showing that d) holds.

 $(d) \Rightarrow e$): Assume that d) holds. We may assume that $m := \inf\{\operatorname{Re} \ell(u) \mid u \in U\} > -\infty$ for some nonempty open neighborhood U of 0 (because if it happens that $0 \notin U$, then we just pick any $x_0 \in U$, and replace U by $U' = U - x_0$).

By continuity of multiplication by scalars, we may pick $\delta > 0$ and a nonempty open $V \subseteq X$ such that $\lambda v \in U$ for all $\lambda \in B_{\delta}(0)$ and all $v \in V$.

Let $v \in V$ and pick $r \in (0, \delta)$. Then for all $t \in \mathbb{R}$ we have $r e^{it} v \in U$. Thus we get

$$m \leq \operatorname{Re}(\ell(r e^{it} v)) = \operatorname{Re}(r e^{it} \ell(v))$$

for all $t \in \mathbb{R}$. Choosing t such that $e^{it} \ell(v) = -|\ell(v)|$ gives $m \leq -r |\ell(v)|$, so $|\ell(v)| \leq -m/r$. Since this holds for every $v \in V$, we get

$$\sup\{\, |\ell(v)| \mid v \in V\} \, \le \, -\frac{m}{r} \, < \infty \, ,$$

so e) holds.

 $e
angle \Rightarrow a$): Assume that e) holds. By translating U if necessary, we may assume that $M := \sup\{ |\ell(u)| \mid u \in U \} < \infty$ for some nonempty open neighborhood U of 0. Let $x \in X$. To show that ℓ is continuous at x, let $\{x_i\}$ be a net in X converging to x. Pick 0 < r < 1 and an open neighborhood V of 0 such that $\lambda v \in U$ for all $\lambda \in B_r(0)$ and all $v \in V$. Let $\varepsilon > 0$. Set

$$W := \varepsilon \left(\frac{r}{M+r+1} \right)^2 V$$

Since W is an open neighborhood of 0, we may find i_0 such that $(x_i - x) \in W$ whenever $i \gtrsim i_0$. Now, as $\frac{r}{M+r+1} < r$, we have that $\frac{r}{M+r+1}V \subseteq U$, which gives that $W \subseteq \frac{\varepsilon r}{M+r+1}U$. Hence, we get that

$$(x_i - x) \in \frac{\varepsilon r}{M + r + 1} U$$
 whenever $i \gtrsim i_0$.

Thus,

$$|\ell(x_i) - \ell(x)| = |\ell(x_i - x)| \le \frac{\varepsilon r}{M + r + 1} M < \varepsilon r < \varepsilon$$

whenever $i \gtrsim i_0$. This shows that $\ell(x_i) \to_\alpha \ell(x)$. Thus we have shown that ℓ is continuous at x. It follows that a holds.

Exercise 10

Let X be an infinite-dimensional normed space.

a) Let U be a weakly open neighborhood of 0 in X (i.e., $0 \in U \subseteq X$ and $U \in \tau_{\text{weak}}$). Then U contains an infinite-dimensional subspace of X.

If U = X, then the assertion is trivial. So we may assume that $U \neq X$. Exercise 6 gives that there exist $\varepsilon > 0$ and $\varphi_1, \ldots, \varphi_n \in X^*$ such that

$$\bigcap_{j=1}^n \{x \in X : |\varphi_j(x)| < \varepsilon\} \subseteq U.$$

In particular, we have $\bigcap_{j=1}^{n} \ker \varphi_j \subseteq U \neq X$. Now, consider the linear map $L: X \to \mathbb{F}^n$ defined by

$$L(x) = (\varphi_1(x), \dots, \varphi_n(x))$$

for all $x \in X$. Then ker $L = \bigcap_{j=1}^{n} \ker \varphi_j \subseteq U$, and $L(X) \neq \{0\}$ (otherwise, all the φ_j 's would be equal to the zero functional on X, so we would have ker $L = X \subseteq U \neq X$, a contradiction). We claim that the subspace ker L is infinite-dimensional:

Assume (for contradiction) that ker L is finite-dimensional. Since X is infinite-dimensional, we must have that ker $L \neq \{0\}$. Pick a basis v_1, \ldots, v_m for ker L and a basis r_1, \ldots, r_p for L(X) (so $1 \leq p \leq n$). Next, pick $u_1, \ldots, u_p \in X$ such that $L(u_k) = r_k$ for $k = 1, \ldots, p$. Then one easily checks that X is spanned by the vectors $u_1, \ldots, u_p, v_1, \ldots, v_m$. Hence X is finitedimensional, which gives a contradiction. Thus, ker L must be infinite-dimensional. As ker L is contained in U, the desired assertion is proven.

b) The weak topology on X does not coincide with the norm topology.

Assume (for contradiction) that these two topologies agree. Let U denote the open unit ball in X, i.e. $U = \{x \in X : ||x|| < 1\}$. Then the assumption gives that U is weakly open, so U contains an infinite-dimensional subspace of X, say M. Pick $v \in M$, $v \neq 0$. Then $\lambda v \in M$ for every $\lambda \in \mathbb{F}$, i.e., $|\lambda| ||v|| = ||\lambda v|| < 1$ for every $\lambda \in \mathbb{F}$. This implies that $|\lambda| < 1/||v||$ for every $\lambda \in \mathbb{F}$, which is impossible.