
MAT4450 - Spring 2024 - Solutions of exercises - Set 3

Exercise 11

Let X be a normed space, X 6= {0}.

a) Assume that X∗ is finite-dimensional. Then X is finite-dimensional too:

Indeed, we then have that X∗∗ = (X∗)∗ is finite-dimensional. Let j denote the canonical map
from X into X∗∗ (given by x 7→ jx, where jx(ϕ) = ϕ(x)). Since j is a linear isometry, and
therefore injective, we get that dim(X) = dim(j(X)) ≤ dim(X∗∗) <∞.

b) X is finite-dimensional if and only if the weak∗-topology on X∗ agrees with the
norm-topology on X∗:

Assume that X is finite-dimensional. Let j be as above. Then

dim(j(X)) = dim(X) = dim(X∗) = dim(X∗∗),

so j(X) = X∗∗. So the weak∗-topology on X∗, being the weak topology on X∗ determined by
j(X) = (X∗)∗, is the same as the weak topology on the normed space X∗. Since X∗ is
finite-dimensional, we get that this topology agrees with the norm-topology on X∗.

Conversely, assume that the weak∗-topology on X∗ agrees with the norm-topology. Now, the
weak topology on X∗ is weaker than the norm topology, and stronger than the weak∗-topology.
So all these three topologies on X∗ coincide, in particular, the weak topology on X∗ agrees
with the norm topology. This forces X∗ to be finite-dimensional, which in turn forces X to be
finite-dimensional by a). (Note: one could also have used d) for this part).

c) X is finite-dimensional if and only if the closed unit ball B∗ in X∗ is compact (w.r.t. the
norm-topology on X∗):

Using a) and known results, we get that

X is finite-dimensional ⇔ X∗ is finite-dimensional ⇔ B∗ is norm-compact in X∗.

d) Assume that X is infinite-dimensional. Let W be a weak∗-open neighborhood of 0 in X∗.
Then W contains an infinite-dimensional subspace of X∗:

The proof is similar to the proof of Exercise 10 a), so we just sketch the proof. We may choose
x1, . . . , xn ∈ X and ε > 0 such that

n⋂
j=1

{ϕ ∈ X∗ : |ϕ(xj)| < ε} ⊆ W.

Consider now the linear map L′ : X∗ → Fn given by L′(ϕ) =
(
ϕ(x1), . . . , ϕ(xn)

)
for all ϕ ∈ X∗.

Clearly, we get that ker(L′) ⊆W . Arguing essentially as in the proof of Exercice 10 a), one
gets that ker(L′) is infinite-dimensional, which shows the assertion.

Exercise 12

Let X be a vector space (over F) and let A be a non-empty subset of X. We recall that a ∈ A is
called an internal point of A if for all x ∈ X \ {0} there exists some ε > 0 such that a+ λx ∈ A
for all λ ∈ F satisfying |λ| < ε. We let Aint denote the set of all internal points of A.
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a) Assume that X is a topological vector space. Then Ao ⊆ Aint :

Let a ∈ Ao and x ∈ X \ {0}. We may then find U ∈ Na such that U ⊆ A. By continuity of the
map λ 7→ a+ λx, we may then find ε > 0 such that a+ λx ∈ U ⊆ A whenever λ ∈ F, |λ| < ε.
Hence, a ∈ Aint.

b) Consider X = R2 with its usual topology, and A = {(x, y) ∈ [−1, 1]2 | x2 ≤ y or y ≤ 0}.
Then Ao 6= Aint :

Indeed, making a drawing of A, one easily sees that 0 ∈ Aint \Ao.

c) Assume that X is a finite-dimensional normed space and A is convex. Then Ao = Aint :

We sketch a proof. Let a ∈ Aint. By replacing A with A− a if necessary, we may assume that
a = 0. We may then find a basis {x1, . . . , xn} for X such that λxj ∈ A for every
λ ∈ T := {λ ∈ F : |λ| = 1} and every j ∈ {1, . . . , n}. Let ‖ · ‖′ be the norm on X given by

‖
n∑

j=1

cj xj‖′ :=
n∑

j=1

|cj |

whenever c1, . . . , cn ∈ F. Now, if x =
∑n

j=1 cj xj ∈ X is such that ‖x‖′ < 1, and we choose
λj ∈ T such that cj = λj |cj | for every j, then x can be written as a convex combination of the
vectors 0, λ1 x1, . . . , λn xn. As these vectors all belong to A, and A is convex, this implies that
{x ∈ X : ‖x‖′ < 1} ⊆ A. But all norms on X are equivalent, so this shows that a = 0 is an
interior point of A, as desired.

d) Consider X = C([0, 1],R) as a normed space (over R) w.r.t. the norm ‖f‖1 =
∫ 1
0 |f(t)| dt,

and A = {f ∈ X | supt∈[0,1] |f(t)| < 1}. Then A is convex and Ao 6= Aint :

Since A is the open unit ball in X w.r.t. to the sup-norm, A is convex. Moreover, 0 is an
interior point of A w.r.t. to the sup-norm, so it is an internal point of A (by a)).
However, 0 is not an interior point of A w.r.t. to ‖ · ‖1. Indeed, let ε > 0 and consider
Uε = {f ∈ X : ‖f‖1 < ε}.

Assume first that ε < 1. Let then gε ∈ X be the function given by gε(t) = 1− ε−1 t when
t ∈ [0, ε], and by gε(t) = 0 when t ∈ [ε, 1]. Then ‖gε‖1 = ε/2 < 1, so gε ∈ Uε. But
supt∈[0,1] |gε(t)| = 1, so gε 6∈ A. Hence, Uε 6⊆ A.

Next, if ε ≥ 1, then g1/2 ∈ U1/2 ⊆ Uε, while g1/2 6∈ A, so Uε 6⊆ A in this case too.

This implies that no ‖ · ‖1-neighborhood of 0 is contained in A, i.e., 0 6∈ Ao. Hence,
0 ∈ Aint \Ao, so Ao 6= Aint.

2


