MAT4450-Spring 2024-Solutions of exercises - Set 3

Exercise 11

Let X be a normed space, $X \neq\{0\}$.
a) Assume that X^{*} is finite-dimensional. Then X is finite-dimensional too:

Indeed, we then have that $X^{* *}=\left(X^{*}\right)^{*}$ is finite-dimensional. Let j denote the canonical map from X into $X^{* *}$ (given by $x \mapsto j_{x}$, where $j_{x}(\varphi)=\varphi(x)$). Since j is a linear isometry, and therefore injective, we get that $\operatorname{dim}(X)=\operatorname{dim}(j(X)) \leq \operatorname{dim}\left(X^{* *}\right)<\infty$.
b) X is finite-dimensional if and only if the weak*-topology on X^{*} agrees with the norm-topology on X^{*} :

Assume that X is finite-dimensional. Let j be as above. Then

$$
\operatorname{dim}(j(X))=\operatorname{dim}(X)=\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}\left(X^{* *}\right)
$$

so $j(X)=X^{* *}$. So the weak*-topology on X^{*}, being the weak topology on X^{*} determined by $j(X)=\left(X^{*}\right)^{*}$, is the same as the weak topology on the normed space X^{*}. Since X^{*} is finite-dimensional, we get that this topology agrees with the norm-topology on X^{*}.
Conversely, assume that the weak*-topology on X^{*} agrees with the norm-topology. Now, the weak topology on X^{*} is weaker than the norm topology, and stronger than the weak*-topology. So all these three topologies on X^{*} coincide, in particular, the weak topology on X^{*} agrees with the norm topology. This forces X^{*} to be finite-dimensional, which in turn forces X to be finite-dimensional by a). (Note: one could also have used d) for this part).
c) X is finite-dimensional if and only if the closed unit ball B^{*} in X^{*} is compact (w.r.t. the norm-topology on X^{*}):

Using a) and known results, we get that
X is finite-dimensional $\Leftrightarrow X^{*}$ is finite-dimensional $\Leftrightarrow B^{*}$ is norm-compact in X^{*}.
d) Assume that X is infinite-dimensional. Let W be a weak*-open neighborhood of 0 in X^{*}. Then W contains an infinite-dimensional subspace of X^{*} :

The proof is similar to the proof of Exercise 10 a), so we just sketch the proof. We may choose $x_{1}, \ldots, x_{n} \in X$ and $\varepsilon>0$ such that

$$
\bigcap_{j=1}^{n}\left\{\varphi \in X^{*}:\left|\varphi\left(x_{j}\right)\right|<\varepsilon\right\} \subseteq W .
$$

Consider now the linear map $L^{\prime}: X^{*} \rightarrow \mathbb{F}^{n}$ given by $L^{\prime}(\varphi)=\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)$ for all $\varphi \in X^{*}$. Clearly, we get that $\operatorname{ker}\left(L^{\prime}\right) \subseteq W$. Arguing essentially as in the proof of Exercice 10 a), one gets that $\operatorname{ker}\left(L^{\prime}\right)$ is infinite-dimensional, which shows the assertion.

Exercise 12

Let X be a vector space (over \mathcal{F}) and let A be a non-empty subset of X. We recall that $a \in A$ is called an internal point of A if for all $x \in X \backslash\{0\}$ there exists some $\varepsilon>0$ such that $a+\lambda x \in A$ for all $\lambda \in \mathcal{F}$ satisfying $|\lambda|<\varepsilon$. We let $A^{\text {int }}$ denote the set of all internal points of A.
a) Assume that X is a topological vector space. Then $A^{o} \subseteq A^{\mathrm{int}}$:

Let $a \in A^{o}$ and $x \in X \backslash\{0\}$. We may then find $U \in \mathcal{N}_{a}$ such that $U \subseteq A$. By continuity of the map $\lambda \mapsto a+\lambda x$, we may then find $\varepsilon>0$ such that $a+\lambda x \in U \subseteq A$ whenever $\lambda \in \mathbb{F},|\lambda|<\varepsilon$. Hence, $a \in A^{\text {int }}$.
b) Consider $X=\mathbb{R}^{2}$ with its usual topology, and $A=\left\{(x, y) \in[-1,1]^{2} \mid x^{2} \leq y\right.$ or $\left.y \leq 0\right\}$. Then $A^{o} \neq A^{\mathrm{int}}$:
Indeed, making a drawing of A, one easily sees that $0 \in A^{\text {int }} \backslash A^{o}$.
c) Assume that X is a finite-dimensional normed space and A is convex. Then $A^{o}=A^{\text {int }}$:

We sketch a proof. Let $a \in A^{\text {int }}$. By replacing A with $A-a$ if necessary, we may assume that $a=0$. We may then find a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for X such that $\lambda x_{j} \in A$ for every
$\lambda \in T:=\{\lambda \in \mathbb{F}:|\lambda|=1\}$ and every $j \in\{1, \ldots, n\}$. Let $\|\cdot\|^{\prime}$ be the norm on X given by

$$
\left\|\sum_{j=1}^{n} c_{j} x_{j}\right\|^{\prime}:=\sum_{j=1}^{n}\left|c_{j}\right|
$$

whenever $c_{1}, \ldots, c_{n} \in \mathbb{F}$. Now, if $x=\sum_{j=1}^{n} c_{j} x_{j} \in X$ is such that $\|x\|^{\prime}<1$, and we choose $\lambda_{j} \in T$ such that $c_{j}=\lambda_{j}\left|c_{j}\right|$ for every j, then x can be written as a convex combination of the vectors $0, \lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}$. As these vectors all belong to A, and A is convex, this implies that $\left\{x \in X:\|x\|^{\prime}<1\right\} \subseteq A$. But all norms on X are equivalent, so this shows that $a=0$ is an interior point of A, as desired.
d) Consider $X=C([0,1], \mathbb{R})$ as a normed space (over $\mathbb{R})$ w.r.t. the norm $\|f\|_{1}=\int_{0}^{1}|f(t)| d t$, and $A=\left\{f \in X\left|\sup _{t \in[0,1]}\right| f(t) \mid<1\right\}$. Then A is convex and $A^{o} \neq A^{\mathrm{int}}$:
Since A is the open unit ball in X w.r.t. to the sup-norm, A is convex. Moreover, 0 is an interior point of A w.r.t. to the sup-norm, so it is an internal point of A (by a)).
However, 0 is not an interior point of A w.r.t. to $\|\cdot\|_{1}$. Indeed, let $\varepsilon>0$ and consider $U_{\varepsilon}=\left\{f \in X:\|f\|_{1}<\varepsilon\right\}$.

Assume first that $\varepsilon<1$. Let then $g_{\varepsilon} \in X$ be the function given by $g_{\varepsilon}(t)=1-\varepsilon^{-1} t$ when $t \in[0, \varepsilon]$, and by $g_{\varepsilon}(t)=0$ when $t \in[\varepsilon, 1]$. Then $\left\|g_{\varepsilon}\right\|_{1}=\varepsilon / 2<1$, so $g_{\varepsilon} \in U_{\varepsilon}$. But $\sup _{t \in[0,1]}\left|g_{\varepsilon}(t)\right|=1$, so $g_{\varepsilon} \notin A$. Hence, $U_{\varepsilon} \nsubseteq A$.

Next, if $\varepsilon \geq 1$, then $g_{1 / 2} \in U_{1 / 2} \subseteq U_{\varepsilon}$, while $g_{1 / 2} \notin A$, so $U_{\varepsilon} \nsubseteq A$ in this case too. This implies that no $\|\cdot\|_{1}$-neighborhood of 0 is contained in A, i.e., $0 \notin A^{o}$. Hence, $0 \in A^{\text {int }} \backslash A^{o}$, so $A^{o} \neq A^{\text {int }}$.

