MAT4450-Spring 2024-Solutions of exercises - Set 4

Exercise 13

Here is an example of two nonempty disjoint (unbounded) closed convex subsets F and K of \mathbb{R}^{2} where the separation property asserted in the Hahn-Banach separation theorem III is not satisfied:
Set $F:=\left\{(x, y) \in \mathbb{R}^{2}: y \geq e^{x}\right\}$ and $K:=\left\{(x, y) \in \mathbb{R}^{2}: y \leq 0\right\}$. Then there is no $\varphi \in\left(\mathbb{R}^{2}\right)^{*}$ such that

$$
\sup \{\varphi(x, y):(x, y) \in K\}<\inf \{\varphi(x, y):(x, y) \in F\}
$$

This is easy to see by making a drawing, or by writing $\left(\mathbb{R}^{2}\right)^{*}=\left\{\varphi_{(a, b)}:(a, b) \in \mathbb{R}^{2}\right\}$, where $\varphi_{(a, b)}(x, y):=a x+b y$, and studying the possible values of both sides of this inequality.
We note that the algebraic Hahn-Banach separation theorem guarantees that there exists a nonzero $\varphi \in\left(\mathbb{R}^{2}\right)^{*}$ such that $\sup \{\varphi(x, y):(x, y) \in K\} \leq \inf \{\varphi(x, y):(x, y) \in F\}$. This happens exactly when $\varphi=\varphi_{(0, b)}, b>0$; both sides of the inequality are then equal to 0 .

Exercise 14 (= Exercise 2.4.6 in Pedersen's book)
Let $\left\{x_{n}\right\}$ be a sequence in a normed space X, such that $\varphi\left(x_{n}\right) \rightarrow \varphi(x)$ for some $x \in X$ and all $\varphi \in X^{*}$. (This says that $x_{n} \rightarrow x$ in the weak topology of X). Let $\varepsilon>0$ and $m \in \mathbb{N}$. Then there is a convex combination y of vectors in $X_{m}:=\left\{x_{n}: n \geq m\right\}$ such that $\|x-y\|<\varepsilon$:

We first recall that if A is a nonempty subset of X, then $\operatorname{co}(A)$ denotes the convex subset of X consisting of all convex combinations of vectors in A.
Set $S_{m}:=\operatorname{co}\left(X_{m}\right)$. Since S_{m} is a convex subset of X, we know that ${\overline{S_{m}}}^{\|\cdot\|}={\overline{S_{m}}}^{\text {weak }}$. Since $\left\{x_{n}\right\}_{n \geq m}$ is a sequence in S_{m} converging weakly to x, this gives that $x \in \overline{S_{m}}\|\cdot\|$. Thus, given $\varepsilon>0$, there exists some $y \in S_{m}$ such that $\|x-y\|<\varepsilon$, as was to be shown.

Exercise 15

a) Let $n, m \in \mathbb{N}$, and choose some norms on \mathbb{F}^{n} and \mathbb{F}^{m}. Let A be a $m \times n$ matrix over \mathbb{F}, and $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ be the linear map having A as its standard matrix. We identify \mathbb{F}^{n} with $\left(\mathbb{F}^{n}\right)^{*}$ via the map $y \mapsto \varphi_{y}$, where $\varphi_{y}(x):=x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$. Similarly, we identify \mathbb{F}^{m} with $\left(\mathbb{F}^{m}\right)^{*}$.
The standard matrix of the adjoint operator $T^{*}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ is the transpose of A :
Let $y \in \mathbb{F}^{m}$. Then, for all $x \in \mathbb{F}^{n}$, we have

$$
\left[T^{*}(y)\right](x)=(y \circ T)(x)=y(T(x))=(A x) \cdot y=x^{t} A^{t} y=x \cdot\left(A^{t} y\right)=\left[A^{t} y\right](x) .
$$

Thus $T^{*}(y)=A^{t} y$.
b) Let X be a normed space over \mathbb{F}, and let $\varphi \in X^{*}$, i.e., $\varphi \in \mathcal{B}(X, \mathbb{F})$. Indentify \mathbb{F} with $(\mathbb{F})^{*}$ in the obvious way, that is we consider $\lambda \in \mathbb{F}$ as the linear functional on \mathbb{F} given by $\lambda(\mu)=\lambda \mu$ for all $\mu \in \mathbb{F}$.

Then the adjoint map $\varphi^{*} \in \mathcal{B}\left(\mathbb{F}, X^{*}\right)$ is given by $\varphi^{*}(\lambda)=\lambda \varphi$ for all $\lambda \in \mathbb{F}$:
Let $\lambda \in \mathbb{F}$. Then, for all $x \in X$, we have

$$
\left[\varphi^{*}(\lambda)\right](x)=[\lambda \circ \varphi](x)=\lambda(\varphi(x))=\lambda \varphi(x)=[\lambda \varphi](x),
$$

which proves the assertion.

Exercise 16

Consider $X=\ell^{1}(\mathbb{N}, \mathbb{F})$ as a normed space w.r.t. the $\|\cdot\|_{1}$-norm. Recall that $\ell^{\infty}(\mathbb{N}, \mathbb{F})$ (with the $\|.\|_{\infty}$-norm) may be identified with X^{*} via the isometric isomorphism $g \mapsto \varphi_{g}$, where $\varphi_{g}(f):=\sum_{n=1}^{\infty} f(n) g(n)$ for all $f \in \ell^{1}(\mathbb{N}, \mathbb{F})$ whenever $g \in \ell^{\infty}(\mathbb{N}, \mathbb{F})$.
Set $Y:=c_{0}(\mathbb{N}, \mathbb{F})=\left\{g \in \ell^{\infty}(\mathbb{N}, \mathbb{F}) \mid \lim _{n \rightarrow \infty} g(n)=0\right\}$. Recall also that X may be identified with Y^{*} (when Y is equipped with the $\|\cdot\|_{\infty}$-norm), via the isometric isomorphim $f \mapsto \psi_{f}$, where $\psi_{f}(g)=\sum_{n=1}^{\infty} f(n) g(n)$ for all $f \in X=\ell^{1}(\mathbb{N}, \mathbb{F})$ whenever $g \in Y=c_{0}(\mathbb{N}, \mathbb{F})$.
a) Let $T: X \rightarrow Y$ be the linear map given by $[T(f)](n)=\sum_{m=n}^{\infty} f(m)$ for all $f \in X$ and $n \in \mathbb{N}$. Then T is bounded:

Indeed, let $f \in X$. Then we have that

$$
|[T(f)](n)| \leq \sum_{m=n}^{\infty}|f(m)| \leq \sum_{m=1}^{\infty}|f(m)|=\|f\|_{1}
$$

for all $n \in \mathbb{N}$. So $\|T(f)\|_{\infty} \leq\|f\|_{1}$. Hence, T is bounded, with $\|T\| \leq 1$.
An expression for $T^{*} \in \mathcal{B}\left(Y^{*}, X^{*}\right)=\mathcal{B}\left(X, X^{*}\right)$ is as follows.
Let $f \in Y^{*}=X$. Then, for all $h \in X$, we get (using Fubini)

$$
\begin{aligned}
{\left[T^{*}(f)\right](h) } & =(f \circ T)(h)=f(T(h))=\sum_{n=1}^{\infty} f(n)[T(h)](n)=\sum_{n=1}^{\infty} \sum_{m=n}^{\infty} f(n) h(m) \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{m} h(m) f(n)=\sum_{m=1}^{\infty} h(m) g(m)=[g](h),
\end{aligned}
$$

where $g \in X^{*}=\ell^{\infty}(\mathbb{N}, \mathbb{F})$ is given by $g(m):=\sum_{n=1}^{m} f(n)$ for all $m \in \mathbb{N}$.
Thus, $\left[T^{*}(f)\right](m)=\sum_{n=1}^{m} f(n)$ for all $m \in \mathbb{N}$.
b) Consider Y as a subspace of X^{*}. Then Y is norm-closed in X^{*} :

Let $\left\{g_{m}\right\}$ be a sequence in Y such that $\left\|g_{m}-g\right\|_{\infty} \rightarrow 0$ as $m \rightarrow \infty$ for some $g \in X^{*}=\ell^{\infty}(\mathbb{N}, \mathbb{F})$. Then for all $n, m \in \mathbb{N}$ we have

$$
|g(n)| \leq\left|g(n)-g_{m}(n)\right|+\left|g_{m}(n)\right| \leq\left\|g-g_{m}\right\|_{\infty}+\left[g_{m}(n) \mid\right.
$$

Let $\varepsilon>0$. Then choose first $m \in \mathbb{N}$ such that $\left\|g-g_{m}\right\|_{\infty}<\varepsilon / 2$. Then choose $N \in \mathbb{N}$ such that $\left|g_{m}(n)\right|<\varepsilon / 2$ for all $n \geq N$. Then we get that $|g(n)|<\varepsilon / 2+\varepsilon / 2=\varepsilon$ for all $n \geq N$. This shows that $g(n) \rightarrow 0$ as $n \rightarrow \infty$, i.e., $g \in Y$, as desired.

Moreover, we have that $\left(Y^{\perp}\right)^{\perp}=X^{*}\left(\right.$ so $\left.Y \neq\left(Y^{\perp}\right)^{\perp}\right)$:
We first show that $Y^{\perp}=\{0\}$: Let $f \in Y^{\perp}$. So $f \in X$ and $\sum_{n=1}^{\infty} f(n) g(n)=0$ for all $g \in Y$.
Choosing g to be the indicator function of the set $\{m\}$ for any $m \in \mathbb{N}$ gives that $f(m)=0$. Thus $f=0$, as desired. Using this we get $\left(Y^{\perp}\right)^{\perp}=\{0\}^{\perp}=X^{*}$.

