MATA4450 - Spring 2024 - Solutions of exercises - Set 4

Exercise 13

Here is an example of two nonempty disjoint (unbounded) closed convex subsets F' and K of
R? where the separation property asserted in the Hahn-Banach separation theorem III is not
satisfied:
Set F:={(z,y) € R?:y > e} and K := {(z,y) € R? : y < 0}. Then there is no ¢ € (R?)*
such that

sup{(z,y) : (z,y) € K} <inf{p(z,y) : (z,y) € F}.
This is easy to see by making a drawing, or by writing (R?)* = {®(ap) : (ab) € R2}, where
P(ap) (T, y) := ax + by, and studying the possible values of both sides of this inequality.
We note that the algebraic Hahn-Banach separation theorem guarantees that there exists a
nonzero ¢ € (R?)* such that sup{p(z,y) : (z,y) € K} < inf{p(z,y) : (v,y) € F}. This
happens exactly when ¢ = (), b > 0; both sides of the inequality are then equal to 0.

Exercise 14 (= Exercise 2.4.6 in Pedersen’s book)

Let {z,} be a sequence in a normed space X, such that p(x,) — @(z) for some x € X and all
p € X*. (This says that x, — = in the weak topology of X ). Let € >0 and m € N. Then there
is a conver combination y of vectors in Xp, := {x, : n > m} such that ||z —y|| < e :

We first recall that if A is a nonempty subset of X, then co(A) denotes the convex subset of X
consisting of all convex combinations of vectors in A.
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Set Sy, := co(X,,). Since Sy, is a convex subset of X, we know that %H'” = . Since

{zn}n>m is a sequence in S, converging weakly to z, this gives that = € %”'H. Thus, given
e > 0, there exists some y € S, such that ||z — y|| < €, as was to be shown.
Exercise 15

a) Let n,m € N, and choose some norms on F" and F™. Let A be a m X n matriz over F, and
T :F" — F™ be the linear map having A as its standard matriz. We identify F™ with (F")* via
the map y — @y, where py(x) ==z -y => 1 xy;. Similarly, we identify F™ with (F™)*.

The standard matriz of the adjoint operator T™ : F™ — F" is the transpose of A:

Let y € F™. Then, for all x € F", we have
[T ())(x) = (y o T)(w) = y(T(2)) = (Ax) -y = 2’ A'y =z - (A'y) = [A"y](2).
Thus T*(y) = Aly.

b) Let X be a normed space over F, and let ¢ € X*, i.e., p € B(X,F). Indentify F with (F)* in
the obvious way, that is we consider A € F as the linear functional on F given by A(pn) = Au for
all peF.

Then the adjoint map ¢* € B(F, X*) is given by ¢*(\) = A\ for all A € F:
Let A € F. Then, for all x € X, we have
(e (M](z) = [Ao @l(x) = Mp(x)) = Ap(z) = [Ap](2),

which proves the assertion.



Exercise 16

Consider X = (*(N,F) as a normed space w.r.t. the || - ||1-norm. Recall that £>°(N,F) (with the
I|.||oo-120rm) may be identified with X* via the isometric isomorphism g — g4, where

©q(f) =300, f(n)g(n) for all f € ¢*(N,F) whenever g € £>°(N,F).

Set Y :=co(N,F) = {g € (>°(N,F) | limy,—00 g(n) = 0}. Recall also that X may be identified
with Y* (when'Y is equipped with the |.||so-norm), via the isometric isomorphim f — 1y,
where Y5(g) = > 00 f(n)g(n) for all f € X = (Y(N,F) whenever g € Y = ¢(N,F).

a) Let T : X =Y be the linear map given by [T'(f)](n) =>_°_. f(m) for all f € X and
n € N. Then T is bounded:

Indeed, let f € X. Then we have that

[T < Y Fm) < Y 1fm)] = [1fh

for all n € N. So ||T(f)|lco < |If]]1. Hence, T is bounded, with ||T'|| < 1.

An expression for T* € B(Y*, X*) = B(X, X™) is as follows.
Let f € Y* = X. Then, for all h € X, we get (using Fubini)

[T (N](h) = (fo T)(h) = F(T(R) = 3 F)TW)]m) = 3" f(n)h(m)
n=1 n=1m=n
=3 S hm)f(n) = 3 h(m)g(m) = [g](h),

where g € X* = (*°(N,F) is given by g(m) := ", f(n) for all m € N.
Thus, [7%())(m) = S0, £(n) for all m € N.

b) Consider Y as a subspace of X*. Then Y is norm-closed in X*:
Let {gm} be a sequence in Y such that ||gm — gllcc — 0 as m — oo for some
g € X* =/(>(N,F). Then for all n,m € N we have

lg()| < 1g(n) = gm(n)| + 1gm(n)] < llg = gmlloc + lgm(n)]

Let £ > 0. Then choose first m € N such that |g — gm||cc < /2. Then choose N € N such
that |gm(n)| < /2 for all n > N. Then we get that |g(n)| < /2 +¢/2 =€ for all n > N. This
shows that g(n) — 0 as n — oo, i.e., g € Y, as desired.

Moreover, we have that (Y+)t = X* (so Y # (Y1)1):

We first show that Y+ = {0}: Let f € Y1. So f € X and > 02, f(n)g(n) =0 for all g € Y.
Choosing g to be the indicator function of the set {m} for any m € N gives that f(m) = 0.
Thus f = 0, as desired. Using this we get (Y1)+ = {0}+ = X*.



