
MAT4450 - Spring 2024 - Solutions of exercises - Set 4

Exercise 13

Here is an example of two nonempty disjoint (unbounded) closed convex subsets F and K of
R2 where the separation property asserted in the Hahn-Banach separation theorem III is not
satisfied :

Set F := {(x, y) ∈ R2 : y ≥ ex} and K := {(x, y) ∈ R2 : y ≤ 0}. Then there is no ϕ ∈ (R2)∗

such that
sup{ϕ(x, y) : (x, y) ∈ K} < inf{ϕ(x, y) : (x, y) ∈ F}.

This is easy to see by making a drawing, or by writing (R2)∗ = {ϕ(a,b) : (a, b) ∈ R2}, where
ϕ(a,b)(x, y) := ax+ by, and studying the possible values of both sides of this inequality.
We note that the algebraic Hahn-Banach separation theorem guarantees that there exists a
nonzero ϕ ∈ (R2)∗ such that sup{ϕ(x, y) : (x, y) ∈ K} ≤ inf{ϕ(x, y) : (x, y) ∈ F}. This
happens exactly when ϕ = ϕ(0,b), b > 0 ; both sides of the inequality are then equal to 0.

Exercise 14 (= Exercise 2.4.6 in Pedersen’s book)

Let {xn} be a sequence in a normed space X, such that ϕ(xn)→ ϕ(x) for some x ∈ X and all
ϕ ∈ X∗. (This says that xn → x in the weak topology of X). Let ε > 0 and m ∈ N. Then there
is a convex combination y of vectors in Xm := {xn : n ≥ m} such that ‖x− y‖ < ε :

We first recall that if A is a nonempty subset of X, then co(A) denotes the convex subset of X
consisting of all convex combinations of vectors in A.

Set Sm := co(Xm). Since Sm is a convex subset of X, we know that Sm
‖·‖

= Sm
weak

. Since

{xn}n≥m is a sequence in Sm converging weakly to x, this gives that x ∈ Sm
‖·‖

. Thus, given
ε > 0, there exists some y ∈ Sm such that ‖x− y‖ < ε, as was to be shown.

Exercise 15

a) Let n,m ∈ N, and choose some norms on Fn and Fm. Let A be a m× n matrix over F, and
T : Fn → Fm be the linear map having A as its standard matrix. We identify Fn with (Fn)∗ via
the map y 7→ ϕy, where ϕy(x) := x · y =

∑n
i=1 xiyi. Similarly, we identify Fm with (Fm)∗.

The standard matrix of the adjoint operator T ∗ : Fm → Fn is the transpose of A:

Let y ∈ Fm. Then, for all x ∈ Fn, we have

[T ∗(y)](x) = (y ◦ T )(x) = y(T (x)) = (Ax) · y = xtAty = x · (Aty) = [Aty](x).

Thus T ∗(y) = Aty.

b) Let X be a normed space over F, and let ϕ ∈ X∗, i.e., ϕ ∈ B(X,F). Indentify F with (F)∗ in
the obvious way, that is we consider λ ∈ F as the linear functional on F given by λ(µ) = λµ for
all µ ∈ F.

Then the adjoint map ϕ∗ ∈ B(F, X∗) is given by ϕ∗(λ) = λϕ for all λ ∈ F:

Let λ ∈ F. Then, for all x ∈ X, we have

[ϕ∗(λ)](x) = [λ ◦ ϕ](x) = λ(ϕ(x)) = λϕ(x) = [λϕ](x),

which proves the assertion.
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Exercise 16

Consider X = `1(N,F) as a normed space w.r.t. the ‖ · ‖1-norm. Recall that `∞(N,F) (with the
‖.‖∞-norm) may be identified with X∗ via the isometric isomorphism g 7→ ϕg, where
ϕg(f) :=

∑∞
n=1 f(n)g(n) for all f ∈ `1(N,F) whenever g ∈ `∞(N,F).

Set Y := c0(N,F) = {g ∈ `∞(N,F) | limn→∞ g(n) = 0}. Recall also that X may be identified
with Y ∗ (when Y is equipped with the ‖.‖∞-norm), via the isometric isomorphim f 7→ ψf ,
where ψf (g) =

∑∞
n=1 f(n)g(n) for all f ∈ X = `1(N,F) whenever g ∈ Y = c0(N,F).

a) Let T : X → Y be the linear map given by [T (f)](n) =
∑∞

m=n f(m) for all f ∈ X and
n ∈ N. Then T is bounded :

Indeed, let f ∈ X. Then we have that

∣∣[T (f)](n)
∣∣ ≤ ∞∑

m=n

|f(m)| ≤
∞∑

m=1

|f(m)| = ‖f‖1

for all n ∈ N. So ‖T (f)‖∞ ≤ ‖f‖1. Hence, T is bounded, with ‖T‖ ≤ 1.

An expression for T ∗ ∈ B(Y ∗, X∗) = B(X,X∗) is as follows.

Let f ∈ Y ∗ = X. Then, for all h ∈ X, we get (using Fubini)

[T ∗(f)](h) = (f ◦ T )(h) = f(T (h)) =
∞∑
n=1

f(n)[T (h)](n) =
∞∑
n=1

∞∑
m=n

f(n)h(m)

=
∞∑

m=1

m∑
n=1

h(m)f(n) =
∞∑

m=1

h(m)g(m) = [g](h),

where g ∈ X∗ = `∞(N,F) is given by g(m) :=
∑m

n=1 f(n) for all m ∈ N.

Thus, [T ∗(f)](m) =
∑m

n=1 f(n) for all m ∈ N.

b) Consider Y as a subspace of X∗. Then Y is norm-closed in X∗:

Let {gm} be a sequence in Y such that ‖gm − g‖∞ → 0 as m→∞ for some
g ∈ X∗ = `∞(N,F). Then for all n,m ∈ N we have

|g(n)| ≤ |g(n)− gm(n)|+ |gm(n)| ≤ ‖g − gm‖∞ + [gm(n)|

Let ε > 0. Then choose first m ∈ N such that ‖g − gm‖∞ < ε/2. Then choose N ∈ N such
that |gm(n)| < ε/2 for all n ≥ N . Then we get that |g(n)| < ε/2 + ε/2 = ε for all n ≥ N . This
shows that g(n)→ 0 as n→∞, i.e., g ∈ Y , as desired.

Moreover, we have that (Y ⊥)⊥ = X∗ (so Y 6= (Y ⊥)⊥):

We first show that Y ⊥ = {0}: Let f ∈ Y ⊥. So f ∈ X and
∑∞

n=1 f(n)g(n) = 0 for all g ∈ Y .
Choosing g to be the indicator function of the set {m} for any m ∈ N gives that f(m) = 0.
Thus f = 0, as desired. Using this we get (Y ⊥)⊥ = {0}⊥ = X∗.
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