
MAT4450 - Spring 2024 - Solutions of exercises - Set 6

Exercise 23

Let X be a vector space (over F).

a) Let A be a nonempty subset of X and set

co(A) =
{ n∑

j=1

λj aj | n ∈ N, λ1, . . . , λn ∈ [0, 1],
n∑

j=1

λj = 1, a1, . . . , an ∈ A
}
.

(This says that co(A) consists of all possible convex combinations of vectors in A.)

Then co(A) is the least convex subset of X containing A:

We first remark that an easy induction argument shows that the following statement holds for
every n ∈ N : If C is a convex subset of X and u1, . . . , un ∈ C, then any convex combination of
the uj ’s belongs to C, that is, if λ1, . . . , λn ∈ [0, 1], and

∑n
j=1 λj = 1, then

∑n
j=1 λj uj ∈ C.

Next, we note that A ⊆ co(A) (take n = 1). Moreover, co(A) is convex:

Indeed, if x =
∑n

j=1 λj aj and y =
∑m

k=1 µk bk both lies in co(A) (with obvious assumptions on
the aj ’s, the bk’s, the λj ’s and the µk’s), then for each 0 < t < 1, we have

(1− t)x+ ty =
n∑

j=1

(1− t)λj aj +
m∑
k=1

tµk bk ∈ co(A)

since
n∑

j=1

(1− t)λj +

m∑
k=1

tµk = 1− t+ t = 1.

Finally, assume that C is a convex subset of X containing A. Then co(A) ⊆ C:

Indeed, assume that x ∈ co(A). Write x =
∑n

j=1 λj aj as a convex combination of a1, . . . , an ∈ A.
Then a1, . . . , an ∈ C, so our first remark implies that x ∈ C.

This shows that co(A) is the least convex subset of X containing A, as desired.

b) Let C be a nonempty convex subset of X. Assume F is a face of C and K is a face of F .

Then K is a face of C:

Consider x, y ∈ C and 0 < t < 1 such that (1− t)x+ ty ∈ K. Since K ⊆ F , we have
(1− t)x+ ty ∈ F . Since F is a face of C, this implies that x, y ∈ F . Since K is a face of F , we get
that x, y ∈ K, as desired.

Exercise 24

Let Ω be a compact Hausdorff space and let {fn} be a sequence in C(Ω,F) such that
supn∈N ‖fn‖∞ <∞ and {fn} converges to some f ∈ C(Ω,F) pointwise on Ω.

Then we have

f ∈ co
(
{fn, n ∈ N}

)‖·‖∞
.

To prove this assertion, we observe that, since co
(
{fn, n ∈ N}

)
is a convex subset of C(Ω,F), we

know that

co
(
{fn, n ∈ N}

)‖·‖∞
= co

(
{fn, n ∈ N}

)weak
.
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It therefore suffices to show that fn → f as n→∞ in the weak topology. Let’s assume that
F = C. (The case where F = R can be handled in a similar way.)

We recall that the dual space of C(Ω,C) may be identified with the space M(Ω) of all regular
complex Borel measures on Ω. If µ ∈M(Ω) = C(Ω,C)∗ and f ∈ C(Ω,C), this identification
means that we have µ(f) =

∫
X f dµ. A natural idea to prove the desired statement is therefore to

make use of Lebesgue’s Dominated Convergence Theorem (LDCT).

Consider first µ ∈M(Ω)+. Set s := supn∈N ‖fn‖∞ (which is a finite number by assumption).
Then we have that |fn(x)| ≤ s for all x ∈ Ω, so |fn| ≤ s 1Ω on Ω for all n ∈ N. Since µ is a finite
measure, the function s 1Ω is integrable w.r.t. to µ. Hence we may apply the LDCT and get that
every fn is integrable w.r.t. µ, and

lim
n→∞

µ(fn) = lim
n→∞

∫
Ω
fn dµ =

∫
Ω
f dµ = µ(f).

Since any µ ∈M(Ω) is a linear combination of measures in M(Ω)+, we get that
limn→∞ µ(fn) = µ(f) for all µ ∈M(Ω) = C(Ω,C)∗, i.e., fn → f weakly, as desired.

Note: The assumptions in this exercise are not enough to guarantee that fn converges uniformly
to f as n→∞ (which would have solved this exercise in a rather trivial way). You can
f.ex. consider Ω = [0, 1], and for each n ∈ N let fn : [0, 1]→ F be a continuous function taking all
its values in [0, 1], which is zero outside (1/(n+ 1), 1/n) and takes the value 1 at the midpoint of
(1/(n+ 1), 1/n). Then supn∈N ‖fn‖∞ = 1 and fn converges to 0 pointwise on Ω, but it does not
converge to 0 uniformly on Ω.

Exercise 26

Consider the Banach space X = (L1(R,BR, µ), ‖ · ‖1) (over F), where BR denotes the σ-algebra of
all Borel subsets of R and µ denotes the Lebesgue measure on BR.

Consider B := {f ∈ X : ‖f‖1 ≤ 1}, which is clearly convex.

a) The convex ball B has no extreme points:

We follow the hint and assume (for contradiction) that there exists some f ∈ ex(B). We first note
that ‖f‖1 = 1. Indeed, assume t := ‖f‖1 ∈ [0, 1).

If t = 0, i.e., f = 0, then we can pick g ∈ B \ {0}, in which case we also have −g ∈ B \ {0}, and
write f = 0 = 1

2g + 1
2(−g), which shows that f 6∈ ex(B).

If t ∈ (0, 1), then f 6= 0 and f = t (1
t f) + (1− t) 0, where 1

t f and 0 both lie in B, which shows
that f 6∈ ex(B).

Thus, in both cases, we get a contradiction, i.e., we must have t = 1, as desired.

We now consider the continuous function F (t) :=
∫

(−∞,t] |f | dµ, t ∈ R. Since

lim
t→∞

F (t) = ‖f‖1 = 1 and lim
t→−∞

F (t) = 0,

there exists (at least one) t0 ∈ R such that F (0) = 1/2.

Set f1 := 2 f 1(−∞,t0] and f2 := 2 f 1(t0,∞]. Then f1, f2 ∈ B since

‖f1‖1 = 2F (t0) = 2 · 1

2
= 1, and

‖f2‖1 = 2

∫
R
|f |1(t0,∞] dµ = 2

∫
R
|f | dµ− 2F (t0) = 2− 1 = 1.

Moreover, we have
1

2
f1 +

1

2
f2 = f 1(−∞,t0] + f 1(t0,∞] = f.
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As f ∈ ex(B), this implies that f = f1 = f2, which is clearly possible only if f = 0. This
contradicts that ‖f‖1 = 1. Hence, we must have that ex(B) = ∅.

b) There is no topology on X making it a locally convex Hausdorff topological vector space such
that B is compact :

Assume τ was such a topology on X. The Krein-Milman theorem would then imply that B had
some extreme points, which is not the case. Hence, there is no such topology on X.

This implies that (L1(R,BR, µ), ‖ · ‖1) can not be isomorphic to the dual space of
(L∞(R,BR, µ), ‖ · ‖∞):

If (L1(R,BR, µ), ‖ · ‖1) was isomorphic to the dual space of (L∞(R,BR, µ), ‖ · ‖∞), then we could
equip X = L1(R,BR, µ) with the weak∗-topology and B would then be compact by Alaoglu’s
theorem; this would contradict the statement above.

Exercise 27

Let (X, τ) be a locally convex Hausdorff topological vector space and K be a nonempty compact
convex subset of X.
Let ϕ ∈ (X, τ)∗ and set m := inf Reϕ(K), M := sup Reϕ(K), s := sup |ϕ(K)|.

There exist x, y, z ∈ ex(K) such that

Reϕ(x) = m, Reϕ(y) = M, |ϕ(z)| = s .

Set F := {x ∈ K : Reϕ(x) = m}. Then, as we have seen in a lecture, F is a compact face of K.
Thus F is a compact convex subset of X, so the Krein-Milman theorem gives that ex(F ) 6= ∅.
Letting x ∈ ex(F ), we get that x ∈ ex(K) and Reϕ(x) = m.

Next, set ψ := −ϕ. Then Reψ = −Reϕ and

inf Reψ(K) = − sup Reϕ(K) = −M.

Using what we have shown above (with ψ instead of ϕ), we get that there exists y ∈ ex(K) such
that Reψ(y) = −M , i.e., Reϕ(y) = M .

Finally, to show the existence of z, we consider the function |ϕ| on X. Since K is compact, there
exists some x0 ∈ K such that

|ϕ(x0)| = s (= sup |ϕ(K)|).

Pick then t ∈ R such that |ϕ(x0)| = eitϕ(x0), and define ϕ′ ∈ (X, τ)∗ by ϕ′ := eitϕ.

Note that ϕ′(x0) = |ϕ(x0)| = s ∈ R, so Reϕ′(x0) = s. Moreover, for every v ∈ K, we have

Reϕ′(v) ≤ |ϕ′(v)| = |ϕ(v)| ≤ s.

Thus, sup Reϕ′(K) = s. Using the second assertion we have shown (with ϕ′ instead of ϕ), we get
that there exists z ∈ ex(K) such that Reϕ′(z) = s. This gives that

s = Reϕ′(z) ≤ |ϕ′(z)| = |ϕ(z)| ≤ s,

hence that |ϕ(z)| = s, as desired.
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