MAT4450-Spring 2024-Solutions of exercises - Set 6

Exercise 23

Let X be a vector space (over \mathbb{F}).
a) Let A be a nonempty subset of X and set

$$
\operatorname{co}(A)=\left\{\sum_{j=1}^{n} \lambda_{j} a_{j} \mid n \in \mathbb{N}, \lambda_{1}, \ldots, \lambda_{n} \in[0,1], \sum_{j=1}^{n} \lambda_{j}=1, a_{1}, \ldots, a_{n} \in A\right\} .
$$

(This says that $\operatorname{co}(A)$ consists of all possible convex combinations of vectors in A.)
Then co(A) is the least convex subset of X containing A :
We first remark that an easy induction argument shows that the following statement holds for every $n \in \mathbb{N}$: If C is a convex subset of X and $u_{1}, \ldots, u_{n} \in C$, then any convex combination of the u_{j} 's belongs to C, that is, if $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$, and $\sum_{j=1}^{n} \lambda_{j}=1$, then $\sum_{j=1}^{n} \lambda_{j} u_{j} \in C$.
Next, we note that $A \subseteq \operatorname{co}(A)$ (take $n=1$). Moreover, $\operatorname{co}(A)$ is convex:
Indeed, if $x=\sum_{j=1}^{n} \lambda_{j} a_{j}$ and $y=\sum_{k=1}^{m} \mu_{k} b_{k}$ both lies in $\operatorname{co}(A)$ (with obvious assumptions on the a_{j} 's, the b_{k} 's, the λ_{j} 's and the μ_{k} 's), then for each $0<t<1$, we have

$$
(1-t) x+t y=\sum_{j=1}^{n}(1-t) \lambda_{j} a_{j}+\sum_{k=1}^{m} t \mu_{k} b_{k} \in \operatorname{co}(A)
$$

since

$$
\sum_{j=1}^{n}(1-t) \lambda_{j}+\sum_{k=1}^{m} t \mu_{k}=1-t+t=1 .
$$

Finally, assume that C is a convex subset of X containing A. Then $\operatorname{co}(A) \subseteq C$:
Indeed, assume that $x \in \operatorname{co}(A)$. Write $x=\sum_{j=1}^{n} \lambda_{j} a_{j}$ as a convex combination of $a_{1}, \ldots, a_{n} \in A$. Then $a_{1}, \ldots, a_{n} \in C$, so our first remark implies that $x \in C$.

This shows that $\operatorname{co}(A)$ is the least convex subset of X containing A, as desired.
b) Let C be a nonempty convex subset of X. Assume F is a face of C and K is a face of F.

Then K is a face of C :
Consider $x, y \in C$ and $0<t<1$ such that $(1-t) x+t y \in K$. Since $K \subseteq F$, we have $(1-t) x+t y \in F$. Since F is a face of C, this implies that $x, y \in F$. Since K is a face of F, we get that $x, y \in K$, as desired.

Exercise 24

Let Ω be a compact Hausdorff space and let $\left\{f_{n}\right\}$ be a sequence in $C(\Omega, \mathbb{F})$ such that $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{\infty}<\infty$ and $\left\{f_{n}\right\}$ converges to some $f \in C(\Omega, \mathbb{F})$ pointwise on Ω.

Then we have

$$
f \in{\overline{\operatorname{co}\left(\left\{f_{n}, n \in \mathbb{N}\right\}\right)}}^{\|\cdot\|_{\infty}} .
$$

To prove this assertion, we observe that, since $\operatorname{co}\left(\left\{f_{n}, n \in \mathbb{N}\right\}\right)$ is a convex subset of $C(\Omega, \mathbb{F})$, we know that

$$
{\overline{\operatorname{co}\left(\left\{f_{n}, n \in \mathbb{N}\right\}\right)}}^{\|\cdot\|_{\infty}}={\overline{\operatorname{co}\left(\left\{f_{n}, n \in \mathbb{N}\right\}\right)}}^{\text {weak }} .
$$

It therefore suffices to show that $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in the weak topology. Let's assume that $\mathbb{F}=\mathbb{C}$. (The case where $\mathbb{F}=\mathbb{R}$ can be handled in a similar way.)

We recall that the dual space of $C(\Omega, \mathbb{C})$ may be identified with the space $M(\Omega)$ of all regular complex Borel measures on Ω. If $\mu \in M(\Omega)=C(\Omega, \mathbb{C})^{*}$ and $f \in C(\Omega, \mathbb{C})$, this identification means that we have $\mu(f)=\int_{X} f d \mu$. A natural idea to prove the desired statement is therefore to make use of Lebesgue's Dominated Convergence Theorem (LDCT).
Consider first $\mu \in M(\Omega)^{+}$. Set $s:=\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{\infty}$ (which is a finite number by assumption). Then we have that $\left|f_{n}(x)\right| \leq s$ for all $x \in \Omega$, so $\left|f_{n}\right| \leq s 1_{\Omega}$ on Ω for all $n \in \mathbb{N}$. Since μ is a finite measure, the function $s 1_{\Omega}$ is integrable w.r.t. to μ. Hence we may apply the LDCT and get that every f_{n} is integrable w.r.t. μ, and

$$
\lim _{n \rightarrow \infty} \mu\left(f_{n}\right)=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu=\int_{\Omega} f d \mu=\mu(f)
$$

Since any $\mu \in M(\Omega)$ is a linear combination of measures in $M(\Omega)^{+}$, we get that $\lim _{n \rightarrow \infty} \mu\left(f_{n}\right)=\mu(f)$ for all $\mu \in M(\Omega)=C(\Omega, \mathbb{C})^{*}$, i.e., $f_{n} \rightarrow f$ weakly, as desired.

Note: The assumptions in this exercise are not enough to guarantee that f_{n} converges uniformly to f as $n \rightarrow \infty$ (which would have solved this exercise in a rather trivial way). You can f.ex. consider $\Omega=[0,1]$, and for each $n \in \mathbb{N}$ let $f_{n}:[0,1] \rightarrow \mathbb{F}$ be a continuous function taking all its values in $[0,1]$, which is zero outside $(1 /(n+1), 1 / n)$ and takes the value 1 at the midpoint of $(1 /(n+1), 1 / n)$. Then $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{\infty}=1$ and f_{n} converges to 0 pointwise on Ω, but it does not converge to 0 uniformly on Ω.

Exercise 26

Consider the Banach space $X=\left(L^{1}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right),\|\cdot\|_{1}\right)$ (over \mathbb{F}), where $\mathcal{B}_{\mathbb{R}}$ denotes the σ-algebra of all Borel subsets of \mathbb{R} and μ denotes the Lebesgue measure on $\mathcal{B}_{\mathbb{R}}$.

Consider $B:=\left\{f \in X:\|f\|_{1} \leq 1\right\}$, which is clearly convex.
a) The convex ball B has no extreme points:

We follow the hint and assume (for contradiction) that there exists some $f \in \operatorname{ex}(B)$. We first note that $\|f\|_{1}=1$. Indeed, assume $t:=\|f\|_{1} \in[0,1)$.

If $t=0$, i.e., $f=0$, then we can pick $g \in B \backslash\{0\}$, in which case we also have $-g \in B \backslash\{0\}$, and write $f=0=\frac{1}{2} g+\frac{1}{2}(-g)$, which shows that $f \notin \operatorname{ex}(B)$.

If $t \in(0,1)$, then $f \neq 0$ and $f=t\left(\frac{1}{t} f\right)+(1-t) 0$, where $\frac{1}{t} f$ and 0 both lie in B, which shows that $f \notin \operatorname{ex}(B)$.

Thus, in both cases, we get a contradiction, i.e., we must have $t=1$, as desired.
We now consider the continuous function $F(t):=\int_{(-\infty, t]}|f| d \mu, t \in \mathbb{R}$. Since

$$
\lim _{t \rightarrow \infty} F(t)=\|f\|_{1}=1 \quad \text { and } \quad \lim _{t \rightarrow-\infty} F(t)=0
$$

there exists (at least one) $t_{0} \in \mathbb{R}$ such that $F(0)=1 / 2$.
Set $f_{1}:=2 f \mathbf{1}_{\left(-\infty, t_{0}\right]}$ and $f_{2}:=2 f \mathbf{1}_{\left(t_{0}, \infty\right]}$. Then $f_{1}, f_{2} \in B$ since

$$
\begin{gathered}
\left\|f_{1}\right\|_{1}=2 F\left(t_{0}\right)=2 \cdot \frac{1}{2}=1, \text { and } \\
\left\|f_{2}\right\|_{1}=2 \int_{\mathbb{R}}|f| \mathbf{1}_{\left(t_{0}, \infty\right]} d \mu=2 \int_{\mathbb{R}}|f| d \mu-2 F\left(t_{0}\right)=2-1=1
\end{gathered}
$$

Moreover, we have

$$
\frac{1}{2} f_{1}+\frac{1}{2} f_{2}=f \mathbf{1}_{\left(-\infty, t_{0}\right]}+f \mathbf{1}_{\left(t_{0}, \infty\right]}=f
$$

As $f \in \operatorname{ex}(B)$, this implies that $f=f_{1}=f_{2}$, which is clearly possible only if $f=0$. This contradicts that $\|f\|_{1}=1$. Hence, we must have that $\operatorname{ex}(B)=\emptyset$.
b) There is no topology on X making it a locally convex Hausdorff topological vector space such that B is compact:

Assume τ was such a topology on X. The Krein-Milman theorem would then imply that B had some extreme points, which is not the case. Hence, there is no such topology on X.
This implies that $\left(L^{1}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right),\|\cdot\|_{1}\right)$ can not be isomorphic to the dual space of $\left(L^{\infty}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right),\|\cdot\|_{\infty}\right):$
If $\left(L^{1}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right),\|\cdot\|_{1}\right)$ was isomorphic to the dual space of $\left(L^{\infty}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right),\|\cdot\|_{\infty}\right)$, then we could equip $X=L^{1}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right)$ with the weak*-topology and B would then be compact by Alaoglu's theorem; this would contradict the statement above.

Exercise 27

Let (X, τ) be a locally convex Hausdorff topological vector space and K be a nonempty compact convex subset of X.
Let $\varphi \in(X, \tau)^{*}$ and $\operatorname{set} m:=\inf \operatorname{Re} \varphi(K), M:=\sup \operatorname{Re} \varphi(K), s:=\sup |\varphi(K)|$.
There exist $x, y, z \in \operatorname{ex}(K)$ such that

$$
\operatorname{Re} \varphi(x)=m, \operatorname{Re} \varphi(y)=M,|\varphi(z)|=s .
$$

Set $F:=\{x \in K: \operatorname{Re} \varphi(x)=m\}$. Then, as we have seen in a lecture, F is a compact face of K. Thus F is a compact convex subset of X, so the Krein-Milman theorem gives that $\operatorname{ex}(F) \neq \emptyset$. Letting $x \in \operatorname{ex}(F)$, we get that $x \in \operatorname{ex}(K)$ and $\operatorname{Re} \varphi(x)=m$.

Next, set $\psi:=-\varphi$. Then $\operatorname{Re} \psi=-\operatorname{Re} \varphi$ and

$$
\inf \operatorname{Re} \psi(K)=-\sup \operatorname{Re} \varphi(K)=-M
$$

Using what we have shown above (with ψ instead of φ), we get that there exists $y \in \operatorname{ex}(K)$ such that $\operatorname{Re} \psi(y)=-M$, i.e., $\operatorname{Re} \varphi(y)=M$.
Finally, to show the existence of z, we consider the function $|\varphi|$ on X. Since K is compact, there exists some $x_{0} \in K$ such that

$$
\left|\varphi\left(x_{0}\right)\right|=s(=\sup |\varphi(K)|) .
$$

Pick then $t \in \mathbb{R}$ such that $\left|\varphi\left(x_{0}\right)\right|=e^{i t} \varphi\left(x_{0}\right)$, and define $\varphi^{\prime} \in(X, \tau)^{*}$ by $\varphi^{\prime}:=e^{i t} \varphi$.
Note that $\varphi^{\prime}\left(x_{0}\right)=\left|\varphi\left(x_{0}\right)\right|=s \in \mathbb{R}$, so $\operatorname{Re} \varphi^{\prime}\left(x_{0}\right)=s$. Moreover, for every $v \in K$, we have

$$
\operatorname{Re} \varphi^{\prime}(v) \leq\left|\varphi^{\prime}(v)\right|=|\varphi(v)| \leq s
$$

Thus, $\sup \operatorname{Re} \varphi^{\prime}(K)=s$. Using the second assertion we have shown (with φ^{\prime} instead of φ), we get that there exists $z \in \operatorname{ex}(K)$ such that $\operatorname{Re} \varphi^{\prime}(z)=s$. This gives that

$$
s=\operatorname{Re} \varphi^{\prime}(z) \leq\left|\varphi^{\prime}(z)\right|=|\varphi(z)| \leq s,
$$

hence that $|\varphi(z)|=s$, as desired.

