MATA4450 - Spring 2024 - Solutions of exercises - Set 6

Exercise 23
Let X be a vector space (over F).
a) Let A be a nonempty subset of X and set

n

CO(A):{ZA]‘CL]' |TL€N, Al A\ € [0,1], Z)\jzl, al,...,anEA}.
J=1 J=1

(This says that co(A) consists of all possible convex combinations of vectors in A.)

Then co(A) is the least convex subset of X containing A:

We first remark that an easy induction argument shows that the following statement holds for
every n € N : If C is a convex subset of X and u1,...,u, € C, then any convex combination of
the u;’s belongs to C, that is, if A1,..., A, € [0,1], and 377, Aj =1, then 377, Aju; € C.
Next, we note that A C co(A) (take n = 1). Moreover, co(A) is convex:

Indeed, if = Y1, Aja; and y = 37}, iy, by both lies in co(A) (with obvious assumptions on
the a;’s, the by’s, the \;’s and the py’s), then for each 0 < ¢t < 1, we have

n

(I—t)z+ty=> (1—t)Aja; + Y tup by € co(A)
j=1 k=1

since
n

DU=tN+D tue=1—t+t=1

j=1 k=1
Finally, assume that C is a convex subset of X containing A. Then co(A) C C:

Indeed, assume that = € co(A). Write x = Z?Zl Ajaj as a convex combination of ay,...,a, € A.
Then ay,...,a, € C, so our first remark implies that x € C.

This shows that co(A) is the least convex subset of X containing A, as desired.

b) Let C' be a nonempty convex subset of X. Assume F' is a face of C' and K is a face of F.
Then K is a face of C"

Consider z,y € C and 0 < t < 1 such that (1 —t)z +ty € K. Since K C F', we have
(1—t)x+ty € F. Since F is a face of C, this implies that z,y € F. Since K is a face of F', we get
that =,y € K, as desired.

Exercise 24

Let © be a compact Hausdorff space and let {f,} be a sequence in C(£2,F) such that
SUP,en || frlloo < 00 and {f,} converges to some f € C(£,F) pointwise on §2.

Then we have

feco{fnne N})H'”“’.

To prove this assertion, we observe that, since co({ fn,m €N }) is a convex subset of C'(Q2,F), we
know that

weak

co({fn,nel\l})u'IIOO =co({fp,neN}) .




It therefore suffices to show that f, — f as n — oo in the weak topology. Let’s assume that
F = C. (The case where F = R can be handled in a similar way.)

We recall that the dual space of C (€2, C) may be identified with the space M(Q) of all regular
complex Borel measures on 2. If 4 € M(Q2) = C(Q,C)* and f € C(2,C), this identification
means that we have p(f) = [y fdp. A natural idea to prove the desired statement is therefore to
make use of Lebesgue’s Dominated Convergence Theorem (LDCT).

Consider first p € M ()", Set s := sup,,cy || fnlloo (which is a finite number by assumption).
Then we have that |f,(z)| < s for all z € Q, so |f,]| < s1g on  for all n € N. Since p is a finite
measure, the function s 1q is integrable w.r.t. to u. Hence we may apply the LDCT and get that
every f, is integrable w.r.t. u, and

Tim pu(f) = Tim /Q Fody = /Q fdp = ulf).

Since any p € M () is a linear combination of measures in M ()", we get that
limy, 00 1(fn) = p(f) for all p € M(Q) = C(Q,C)*, ie., f, — [ weakly, as desired.

Note: The assumptions in this exercise are not enough to guarantee that f, converges uniformly
to f as n — oo (which would have solved this exercise in a rather trivial way). You can

f.ex. consider Q2 = [0, 1], and for each n € N let f, : [0, 1] — F be a continuous function taking all
its values in [0, 1], which is zero outside (1/(n + 1),1/n) and takes the value 1 at the midpoint of
(1/(n+1),1/n). Then sup, ey || fnlloc =1 and f,, converges to 0 pointwise on €2, but it does not
converge to 0 uniformly on €.

Exercise 26

Consider the Banach space X = (LY(R, Bg, i), | - [|l1) (over F), where Bg denotes the o-algebra of
all Borel subsets of R and u denotes the Lebesgue measure on Bg.

Consider B :={f € X : ||f|1 <1}, which is clearly convex.

a) The convez ball B has no extreme points:

We follow the hint and assume (for contradiction) that there exists some f € ex(B). We first note
that || f||1 = 1. Indeed, assume t := || f|1 € [0, 1).

Ift =0, ie., f=0, then we can pick g € B\ {0}, in which case we also have —g € B\ {0}, and
write f =0 = %g + 3(—g), which shows that f ¢ ex(B).

Ift € (0,1), then f #0 and f = t(%f) + (1 —t¢)0, where %f and 0 both lie in B, which shows
that f & ex(B).

Thus, in both cases, we get a contradiction, i.e., we must have t = 1, as desired.

We now consider the continuous function F(t) := f(_oo 1 |f|dp, t € R. Since
lim F(t) = [f|; =1 and lm_F(t) =0,

there exists (at least one) tp € R such that F(0) = 1/2.
Set f1 = 2f 1(_007,50] and f2 = 2f 1(t0,oo}' Then fl, f2 € B since

1
Ifillh =2F(t0) =2-5 =1, and
Hf2!1=2/R\f|1(to,oo]du=2/Rf\du—QF(to):2—1:1,

Moreover, we have

1 1
3 i+ 3 o= aoio) T f Ltg00] = [-

2



As f € ex(B), this implies that f = f; = fs, which is clearly possible only if f = 0. This
contradicts that || f||; = 1. Hence, we must have that ex(B) = 0.

b) There is no topology on X making it a locally convex Hausdorff topological vector space such
that B is compact:

Assume 7 was such a topology on X. The Krein-Milman theorem would then imply that B had
some extreme points, which is not the case. Hence, there is no such topology on X.

This implies that (L*(R, Bg, i), || - ||1) can not be isomorphic to the dual space of
(L>(R, Br, 1), || - lloo):

If (LY(R, Bgr, 1), || - |[1) was isomorphic to the dual space of (L*°(R, Bg, ), || - ||oc), then we could
equip X = L'(R, Bg, i) with the weak*-topology and B would then be compact by Alaoglu’s
theorem; this would contradict the statement above.

Exercise 27

Let (X, 7) be a locally convex Hausdorff topological vector space and K be a nonempty compact
convex subset of X.
Let ¢ € (X, 7)* and set m := inf Re p(K), M :=supRe p(K), s := sup |¢(K)].

There exist x,y,z € ex(K) such that
Rep(z) =m, Rep(y) =M, |p(z)| = s.

Set F':={x € K : Rep(z) = m}. Then, as we have seen in a lecture, F' is a compact face of K.
Thus F is a compact convex subset of X, so the Krein-Milman theorem gives that ex(F') # 0.
Letting = € ex(F'), we get that = € ex(K) and Rep(x) = m.

Next, set ¢ := —¢p. Then Rety = —Rey and
inf Rey)(K) = —supRe p(K) = —M.

Using what we have shown above (with v instead of ¢), we get that there exists y € ex(K) such
that Rey(y) = —M, i.e.,, Rep(y) = M.

Finally, to show the existence of z, we consider the function |p| on X. Since K is compact, there
exists some xy € K such that

p(z0)| = s (= sup |p(K)]).
Pick then ¢t € R such that |p(x0)| = e?p(x0), and define ¢’ € (X, 7)* by ¢ := e'li.
Note that ¢'(x0) = |p(z0)| = s € R, so Re¢'(z9) = s. Moreover, for every v € K, we have
Reg'(v) < [¢'(v)] = |o(v)] < s.

Thus, sup Re ¢/(K) = s. Using the second assertion we have shown (with ¢ instead of ¢), we get
that there exists z € ex(K) such that Re¢’(z) = s. This gives that

s=Rey/(z) <[¢'(2)] = lp(2)] < s,

hence that |¢(z)| = s, as desired.



