
MAT4450 - Spring 2024 - Solutions of exercises - Set 7

Exercise 28

Let K be a nonempty compact subset of R2, and consider the set P of all real polynomials in two
commuting variables as a subset of C(K,R).

Then P is dense in C(K,R) (w.r.t. ‖ · ‖∞):

One readily checks that P is a subalgebra of C(K,R). Moreover, P separates the points of K:

Indeed, assume that (x1, y1), (x2, y2) ∈ K, (x1, y1) 6= (x2, y2). Let then p ∈ P be given by
p(x, y) = (x− x1)2 + (y − y1)2 for all (x, y) ∈ K. Then p(x1, y1) = 0, while p(x2, y2) > 0. Thus,
p(x1, y1) 6= p(x2, y2).

Since we also have that 1K ∈ P, the (real) Stone-Weierstrass theorem gives the desired conclusion.

Exercise 29

Let Ω be a compact Hausdorff space, and let A be a subalgebra of C(Ω,R).

a) Let f ∈ A and n ∈ N. Then |f |1/n ∈ A ‖·‖∞ :

Since f(Ω) is a compact subset of R, we may choose m > 0 such that f(Ω) ⊆ [−m,m]. Now let
g : [−m,m]→ [0,∞) be the continuous function given by g(x) = |x|1/n. Since g(0) = 0, using
Weierstrass’ theorem, we may find a sequence {pk} of real polynomials such that pk(0) = 0 for all
k and pk → g uniformly on [−m,m]. It follows that pk ◦ f ∈ A and

‖ |f |1/n − pk ◦ f‖∞ = ‖(g − pk) ◦ f‖∞ ≤ sup{|(g − pk)(t)| : t ∈ [−m,m]} → 0

as k →∞. Hence, |f |1/n ∈ A ‖·‖∞ .

b) Assume that A separates the points of Ω and that there exists some g ∈ A such that g(x) 6= 0

for all x ∈ Ω. Then A ‖·‖∞ = C(Ω,R):

We first show that 1Ω ∈ A
‖·‖∞

. Replacing g with 1
‖g‖∞ if necessary, we can assume that |g| ≤ 1 on

Ω. Since 0 6∈ |g|(Ω), we have that δ := inf |g|(Ω) > 0. Thus we get that

‖1Ω − |g|1/n‖∞ = sup
ω∈Ω

1− |g(ω)|1/n ≤ 1− δ1/n → 0 as n→∞,

which shows that 1Ω ∈ A
‖·‖∞

.

It follows now that B := A ‖·‖∞ is a subalgebra of C(Ω,R) satisfying all the conditions in the real

version of the Stone-Weierstrass theorem. Thus we get that C(Ω,R) = B ‖·‖∞ = A ‖·‖∞ , as desired.

Exercise 30.

Let H denote a nontrivial (complex) Hilbert space. Recall that K(H) denotes the compact linear
operators on H, and that it is a Banach algebra (w.r.t. operator norm).

Then K(H) is unital if and only if H is finite-dimensional :

If H is finite-dimensional, then K(H) = B(H) is unital with unit IH (the identity operator on H).
Conversely, assume K(H) is unital with unit I. Let ξ ∈ H and let P denote the finite-rank
projection given by P (η) = 〈η, ξ〉ξ for all η ∈ H. Since P ∈ K(H), we have PI = IP = P . This
implies that I(ξ) = I(P (ξ)) = (IP )(ξ) = P (ξ) = ξ. Hence, I = IH , so IH is compact, which we
know happens (if and) only if H is finite-dimensional.
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Exercise 31.

a) Consider

C0(R,C) := {f : R→ C | f is continuous and lim
t→∞

f(t) = lim
t→−∞

f(t) = 0}

(w.r.t. ‖ · ‖∞).

• C0(R,C) is a norm-closed subalgebra of Cb(R,C): This is quite elementary so we skip the proof.

Since Cb(R,C) is a commutative Banach algebra, we get that C0(R,C) is a commutative Banach
algebra.

• C0(R,C) is non-unital :

Assume (for contradiction) that C0(R,C) is unital with unit I. Let x ∈ R. Define then f : R→ C
by

f(t) :=


t− (x− 1) if x− 1 ≤ t ≤ x,
(x+ 1)− t if x ≤ t ≤ x+ 1,

0 otherwise.

for t ∈ R. Then f ∈ C0(R,C) and f(x) = 1. So I(x) = I(x)f(x) = (If)(x) = f(x) = 1. Since this
holds for every x ∈ R, we get that I = 1R, which is impossible since 1R 6∈ C0(R,C).

b) More generally, let Ω denote a locally compact Hausdorff space. If f : Ω→ C, then say that
f vanishes at infinity if for every ε > 0 the set {x ∈ Ω : |f(x)| ≥ ε} is compact in Ω. Set

C0(Ω,C) := {f : Ω→ C | f is continuous and vanishes at infinity}.

• C0(Ω,C) is a norm-closed subalgebra of Cb(Ω,C):

It is quite tedious to prove this directly. We sketch a more elegant way. If Ω is compact, then
C0(Ω,C) = C(Ω,C) = Cb(Ω,C). So we can assume that Ω is not compact and let Ω̃ = Ω ∪ {∞}
denote the one-point compactification of Ω. Set J := {g ∈ C(Ω̃,C) : g(∞) = 0}, which is a closed
ideal of C(Ω̃,C). Moreover, let φ : C(Ω̃,C)→ Cb(Ω,C) denote the algebra-homomorphism given
by φ(g) = g|Ω (= the restriction of g to Ω) for each g ∈ C(Ω̃,C). It is not difficult to check that
‖φ(g)‖∞ = ‖g‖∞ for every g ∈ J , and that φ(J ) = C0(Ω,C). It follows that C0(Ω,C) is a
subalgebra of Cb(Ω,C), which is complete (since J is complete), hence norm-closed.

Since Cb(Ω,C) is a commutative Banach algebra, we get that C0(Ω,C) is a commutative Banach
algebra.

• C0(Ω,C) is unital if and only if Ω is compact :

If Ω is compact, then C0(Ω,C) = C(Ω,C) is unital with unit 1Ω. Conversely, assume C0(Ω,C) is
unital with unit I. Let ω ∈ Ω. We may then pick f ∈ C0(Ω,C) such that f(ω) = 1 (this follows
for example from Proposition 1.7.5 in Pedersen’s book). Then
I(ω) = I(ω)f(ω) = (If)(ω) = f(ω) = 1. Thus, I = 1Ω. So 1Ω vanishes at infinity, which happens
(if and) only if Ω is compact.
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