MAT4450-Spring 2024 - Solutions of exercises - Set 7

Exercise 28

Let K be a nonempty compact subset of \mathbb{R}^{2}, and consider the set \mathcal{P} of all real polynomials in two commuting variables as a subset of $C(K, \mathbb{R})$.
Then \mathcal{P} is dense in $C(K, \mathbb{R})$ (w.r.t. $\left.\|\cdot\|_{\infty}\right)$:
One readily checks that \mathcal{P} is a subalgebra of $C(K, \mathbb{R})$. Moreover, \mathcal{P} separates the points of K :
Indeed, assume that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in K,\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Let then $p \in \mathcal{P}$ be given by $p(x, y)=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}$ for all $(x, y) \in K$. Then $p\left(x_{1}, y_{1}\right)=0$, while $p\left(x_{2}, y_{2}\right)>0$. Thus, $p\left(x_{1}, y_{1}\right) \neq p\left(x_{2}, y_{2}\right)$.
Since we also have that $1_{K} \in \mathcal{P}$, the (real) Stone-Weierstrass theorem gives the desired conclusion.

Exercise 29

Let Ω be a compact Hausdorff space, and let \mathcal{A} be a subalgebra of $C(\Omega, \mathbb{R})$.
a) Let $f \in \mathcal{A}$ and $n \in \mathbb{N}$. Then $|f|^{1 / n} \in \overline{\mathcal{A}}^{\|\cdot\|_{\infty}}$:

Since $f(\Omega)$ is a compact subset of \mathbb{R}, we may choose $m>0$ such that $f(\Omega) \subseteq[-m, m]$. Now let $g:[-m, m] \rightarrow[0, \infty)$ be the continuous function given by $g(x)=|x|^{1 / n}$. Since $g(0)=0$, using Weierstrass' theorem, we may find a sequence $\left\{p_{k}\right\}$ of real polynomials such that $p_{k}(0)=0$ for all k and $p_{k} \rightarrow g$ uniformly on $[-m, m]$. It follows that $p_{k} \circ f \in \mathcal{A}$ and

$$
\left\||f|^{1 / n}-p_{k} \circ f\right\|_{\infty}=\left\|\left(g-p_{k}\right) \circ f\right\|_{\infty} \leq \sup \left\{\left|\left(g-p_{k}\right)(t)\right|: t \in[-m, m]\right\} \rightarrow 0
$$

as $k \rightarrow \infty$. Hence, $|f|^{1 / n} \in \overline{\mathcal{A}}^{\|\cdot\|_{\infty}}$.
b) Assume that \mathcal{A} separates the points of Ω and that there exists some $g \in \mathcal{A}$ such that $g(x) \neq 0$ for all $x \in \Omega$. Then $\overline{\mathcal{A}}^{\|\cdot\|_{\infty}}=C(\Omega, \mathbb{R})$:
We first show that $1_{\Omega} \in \overline{\mathcal{A}}^{\|\cdot\|_{\infty}}$. Replacing g with $\frac{1}{\|g\|_{\infty}}$ if necessary, we can assume that $|g| \leq 1$ on Ω. Since $0 \notin|g|(\Omega)$, we have that $\delta:=\inf |g|(\Omega)>0$. Thus we get that

$$
\left\|1_{\Omega}-|g|^{1 / n}\right\|_{\infty}=\sup _{\omega \in \Omega} 1-|g(\omega)|^{1 / n} \leq 1-\delta^{1 / n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which shows that $1_{\Omega} \in \overline{\mathcal{A}}^{\|\cdot\|_{\infty}}$.
It follows now that $\mathcal{B}:=\overline{\mathcal{A}}\|\cdot\|_{\infty}$ is a subalgebra of $C(\Omega, \mathbb{R})$ satisfying all the conditions in the real version of the Stone-Weierstrass theorem. Thus we get that $C(\Omega, \mathbb{R})=\overline{\mathcal{B}}^{\|\cdot\|_{\infty}}=\overline{\mathcal{A}}^{\|\cdot\|_{\infty}}$, as desired.

Exercise 30.

Let H denote a nontrivial (complex) Hilbert space. Recall that $\mathcal{K}(H)$ denotes the compact linear operators on H, and that it is a Banach algebra (w.r.t. operator norm).

Then $\mathcal{K}(H)$ is unital if and only if H is finite-dimensional:
If H is finite-dimensional, then $\mathcal{K}(H)=\mathcal{B}(H)$ is unital with unit I_{H} (the identity operator on H). Conversely, assume $\mathcal{K}(H)$ is unital with unit I. Let $\xi \in H$ and let P denote the finite-rank projection given by $P(\eta)=\langle\eta, \xi\rangle \xi$ for all $\eta \in H$. Since $P \in \mathcal{K}(H)$, we have $P I=I P=P$. This implies that $I(\xi)=I(P(\xi))=(I P)(\xi)=P(\xi)=\xi$. Hence, $I=I_{H}$, so I_{H} is compact, which we know happens (if and) only if H is finite-dimensional.

Exercise 31.

a) Consider

$$
C_{0}(\mathbb{R}, \mathbb{C}):=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f \text { is continuous and } \lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow-\infty} f(t)=0\right\}
$$

(w.r.t. $\|\cdot\|_{\infty}$).

- $C_{0}(\mathbb{R}, \mathbb{C})$ is a norm-closed subalgebra of $C_{b}(\mathbb{R}, \mathbb{C})$: This is quite elementary so we skip the proof. Since $C_{b}(\mathbb{R}, \mathbb{C})$ is a commutative Banach algebra, we get that $C_{0}(\mathbb{R}, \mathbb{C})$ is a commutative Banach algebra.
- $C_{0}(\mathbb{R}, \mathbb{C})$ is non-unital:

Assume (for contradiction) that $C_{0}(\mathbb{R}, \mathbb{C})$ is unital with unit I. Let $x \in \mathbb{R}$. Define then $f: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
f(t):=\left\{\begin{array}{l}
t-(x-1) \text { if } x-1 \leq t \leq x \\
(x+1)-t \text { if } x \leq t \leq x+1 \\
0 \text { otherwise }
\end{array}\right.
$$

for $t \in \mathbb{R}$. Then $f \in C_{0}(\mathbb{R}, \mathbb{C})$ and $f(x)=1$. So $I(x)=I(x) f(x)=(I f)(x)=f(x)=1$. Since this holds for every $x \in \mathbb{R}$, we get that $I=1_{\mathbb{R}}$, which is impossible since $1_{\mathbb{R}} \notin C_{0}(\mathbb{R}, \mathbb{C})$.
b) More generally, let Ω denote a locally compact Hausdorff space. If $f: \Omega \rightarrow \mathbb{C}$, then say that f vanishes at infinity if for every $\varepsilon>0$ the set $\{x \in \Omega:|f(x)| \geq \varepsilon\}$ is compact in Ω. Set

$$
C_{0}(\Omega, \mathbb{C}):=\{f: \Omega \rightarrow \mathbb{C} \mid f \text { is continuous and vanishes at infinity }\} .
$$

- $C_{0}(\Omega, \mathbb{C})$ is a norm-closed subalgebra of $C_{b}(\Omega, \mathbb{C})$:

It is quite tedious to prove this directly. We sketch a more elegant way. If Ω is compact, then $C_{0}(\Omega, \mathbb{C})=C(\Omega, \mathbb{C})=C_{b}(\Omega, \mathbb{C})$. So we can assume that Ω is not compact and let $\widetilde{\Omega}=\Omega \cup\{\infty\}$ denote the one-point compactification of Ω. Set $\mathcal{J}:=\{g \in C(\widetilde{\Omega}, \mathbb{C}): g(\infty)=0\}$, which is a closed ideal of $C(\widetilde{\Omega}, \mathbb{C})$. Moreover, let $\phi: C(\widetilde{\Omega}, \mathbb{C}) \rightarrow C_{b}(\Omega, \mathbb{C})$ denote the algebra-homomorphism given by $\phi(g)=g_{\mid \Omega}(=$ the restriction of g to $\Omega)$ for each $g \in C(\widetilde{\Omega}, \mathbb{C})$. It is not difficult to check that $\|\phi(g)\|_{\infty}=\|g\|_{\infty}$ for every $g \in \mathcal{J}$, and that $\phi(\mathcal{J})=C_{0}(\Omega, \mathbb{C})$. It follows that $C_{0}(\Omega, \mathbb{C})$ is a subalgebra of $C_{b}(\Omega, \mathbb{C})$, which is complete (since \mathcal{J} is complete), hence norm-closed.

Since $C_{b}(\Omega, \mathbb{C})$ is a commutative Banach algebra, we get that $C_{0}(\Omega, \mathbb{C})$ is a commutative Banach algebra.

- $C_{0}(\Omega, \mathbb{C})$ is unital if and only if Ω is compact:

If Ω is compact, then $C_{0}(\Omega, \mathbb{C})=C(\Omega, \mathbb{C})$ is unital with unit 1_{Ω}. Conversely, assume $C_{0}(\Omega, \mathbb{C})$ is unital with unit I. Let $\omega \in \Omega$. We may then pick $f \in C_{0}(\Omega, \mathbb{C})$ such that $f(\omega)=1$ (this follows for example from Proposition 1.7.5 in Pedersen's book). Then
$I(\omega)=I(\omega) f(\omega)=(I f)(\omega)=f(\omega)=1$. Thus, $I=1_{\Omega}$. So 1_{Ω} vanishes at infinity, which happens (if and) only if Ω is compact.

